==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER SH3-DOMAIN 15-AUG-00 1E6G . COMPND 2 MOLECULE: SPECTRIN ALPHA CHAIN; . SOURCE 2 ORGANISM_SCIENTIFIC: GALLUS GALLUS; . AUTHOR M.C.VEGA,L.SERRANO . 59 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4180.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 67.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 3.4 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 23 39.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 13.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 4 A T 0 0 116 0, 0.0 2,-1.3 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0-149.6 5.6 -0.9 45.9 2 5 A G + 0 0 61 1,-0.2 3,-0.1 27,-0.0 27,-0.0 -0.462 360.0 71.3 89.3 -62.3 3.3 -1.6 48.9 3 6 A K S S- 0 0 111 -2,-1.3 -1,-0.2 1,-0.2 2,-0.2 0.583 106.3 -18.5 -63.9-142.5 0.9 1.3 48.7 4 7 A E - 0 0 92 26,-0.5 26,-3.2 -3,-0.1 2,-0.4 -0.488 67.8-151.7 -68.2 133.8 -1.7 1.7 46.0 5 8 A L E -AB 29 58A 37 53,-0.8 53,-2.3 24,-0.2 2,-0.3 -0.848 9.7-158.4-108.8 145.9 -1.1 -0.5 43.0 6 9 A V E -AB 28 57A 0 22,-2.7 22,-2.1 -2,-0.4 2,-0.5 -0.936 12.7-135.9-127.5 151.1 -2.2 0.4 39.5 7 10 A L E -AB 27 56A 43 49,-2.2 49,-2.3 -2,-0.3 2,-0.6 -0.881 20.0-134.2-103.6 132.8 -2.9 -1.4 36.2 8 11 A V E - B 0 55A 2 18,-1.9 17,-1.8 -2,-0.5 47,-0.2 -0.786 17.0-169.1 -86.1 118.6 -1.6 0.1 33.0 9 12 A L S S+ 0 0 49 45,-3.4 2,-0.3 -2,-0.6 -1,-0.2 0.871 71.3 8.9 -78.0 -36.8 -4.5 -0.1 30.5 10 13 A Y S S- 0 0 129 44,-0.7 2,-0.6 14,-0.1 -1,-0.2 -0.976 88.7 -97.2-140.4 153.1 -2.5 0.9 27.4 11 14 A D - 0 0 109 -2,-0.3 2,-0.3 12,-0.1 12,-0.3 -0.595 45.4-156.7 -76.7 114.0 1.3 1.4 26.8 12 15 A Y B -F 22 0B 19 10,-0.7 10,-1.8 -2,-0.6 2,-0.5 -0.702 10.0-149.6-100.6 147.7 2.1 5.0 27.1 13 16 A Q - 0 0 125 -2,-0.3 8,-0.2 8,-0.2 7,-0.0 -0.941 25.9-116.1-117.2 122.3 5.0 7.0 25.7 14 17 A E - 0 0 91 -2,-0.5 7,-0.1 1,-0.1 36,-0.1 -0.149 28.0-179.6 -54.9 143.8 6.3 10.1 27.5 15 18 A K + 0 0 166 1,-0.2 -1,-0.1 5,-0.1 6,-0.0 0.529 63.9 27.5-123.1 -10.7 6.0 13.4 25.6 16 19 A S S > S- 0 0 40 4,-0.1 3,-1.1 0, 0.0 -1,-0.2 -0.898 90.7 -88.8-147.4 168.0 7.5 15.9 28.0 17 20 A P T 3 S+ 0 0 137 0, 0.0 -3,-0.0 0, 0.0 0, 0.0 0.678 118.6 51.8 -52.0 -33.2 10.2 16.1 30.8 18 21 A R T 3 S+ 0 0 148 30,-0.1 31,-2.2 2,-0.0 2,-0.1 0.681 96.6 89.5 -83.4 -16.7 7.8 15.2 33.7 19 22 A E B < -c 49 0A 12 -3,-1.1 2,-0.3 29,-0.2 31,-0.2 -0.283 57.3-154.0 -86.1 166.4 6.4 12.1 32.1 20 23 A L - 0 0 35 29,-1.2 2,-0.4 28,-0.1 -5,-0.1 -0.764 21.0-116.4-128.8 166.7 7.4 8.4 32.2 21 24 A T - 0 0 52 -2,-0.3 2,-0.3 -8,-0.2 -8,-0.2 -0.940 34.9-178.5-112.1 131.4 6.8 5.6 29.7 22 25 A I B -F 12 0B 7 -10,-1.8 -10,-0.7 -2,-0.4 2,-0.4 -0.901 18.2-130.2-130.9 159.5 4.7 2.6 30.7 23 26 A K > - 0 0 141 -2,-0.3 3,-1.8 -12,-0.3 -15,-0.3 -0.927 27.8-106.2-117.0 139.3 3.5 -0.7 29.2 24 27 A K T 3 S+ 0 0 122 -2,-0.4 -15,-0.2 1,-0.2 -13,-0.1 -0.278 105.0 34.2 -58.9 126.8 0.1 -2.2 29.0 25 28 A G T 3 S+ 0 0 51 -17,-1.8 2,-0.3 1,-0.3 -1,-0.2 0.220 87.2 125.3 112.0 -11.1 -0.2 -5.1 31.5 26 29 A D < - 0 0 64 -3,-1.8 -18,-1.9 -18,-0.1 2,-0.6 -0.590 50.7-148.3 -90.2 141.2 2.0 -3.8 34.3 27 30 A I E +A 7 0A 91 -2,-0.3 2,-0.2 -20,-0.2 -20,-0.2 -0.933 31.8 174.3-102.3 115.5 1.1 -3.3 37.9 28 31 A L E -A 6 0A 13 -22,-2.1 -22,-2.7 -2,-0.6 2,-0.4 -0.696 35.6 -94.8-116.9 175.0 3.0 -0.3 39.1 29 32 A T E -AD 5 42A 3 13,-0.9 13,-1.1 -2,-0.2 2,-0.6 -0.722 33.1-136.1 -92.6 137.5 3.0 1.6 42.4 30 33 A L E + D 0 41A 4 -26,-3.2 -26,-0.5 -2,-0.4 11,-0.2 -0.877 26.2 172.2 -95.6 124.3 0.8 4.7 42.5 31 34 A L E + 0 0 53 9,-3.0 2,-0.3 -2,-0.6 10,-0.2 0.769 67.6 7.9 -98.0 -39.3 2.5 7.7 44.1 32 35 A N E + D 0 40A 61 8,-2.0 8,-2.7 1,-0.1 -1,-0.3 -0.911 48.6 158.7-153.3 127.5 0.0 10.5 43.5 33 36 A S + 0 0 31 -2,-0.3 6,-0.1 6,-0.2 -1,-0.1 0.029 47.0 108.9-133.4 22.0 -3.5 10.6 42.1 34 37 A T + 0 0 121 4,-0.0 2,-0.2 2,-0.0 5,-0.1 0.845 65.5 78.4 -69.0 -36.1 -4.9 13.9 43.5 35 38 A N S S- 0 0 80 3,-0.4 -3,-0.0 1,-0.1 17,-0.0 -0.546 79.5-140.0 -74.3 142.0 -4.8 15.5 40.0 36 39 A K S S+ 0 0 191 -2,-0.2 -1,-0.1 1,-0.1 3,-0.1 0.796 95.1 28.4 -74.6 -30.0 -7.7 14.4 37.8 37 40 A D S S+ 0 0 116 1,-0.2 15,-2.2 15,-0.1 16,-0.5 0.701 119.0 47.8-106.8 -21.0 -5.8 14.0 34.5 38 41 A W E - E 0 51A 66 13,-0.3 2,-0.4 14,-0.2 -3,-0.4 -0.980 59.6-171.1-129.6 124.8 -2.2 13.1 35.6 39 42 A W E - E 0 50A 32 11,-2.6 11,-2.0 -2,-0.4 2,-0.6 -0.932 21.6-129.6-116.6 134.9 -1.1 10.4 38.1 40 43 A K E +DE 32 49A 61 -8,-2.7 -9,-3.0 -2,-0.4 -8,-2.0 -0.744 36.9 166.9 -85.4 124.4 2.4 9.9 39.4 41 44 A V E -DE 30 48A 0 7,-2.6 7,-2.1 -2,-0.6 2,-0.4 -0.554 29.9-124.7-121.5-172.8 3.5 6.3 39.2 42 45 A E E +DE 29 47A 56 -13,-1.1 -13,-0.9 5,-0.2 2,-0.4 -0.982 24.3 177.9-143.8 123.5 6.8 4.5 39.6 43 46 A V E > - E 0 46A 18 3,-2.0 3,-0.9 -2,-0.4 2,-0.7 -0.977 58.6 -47.3-135.2 126.4 8.3 2.1 36.9 44 47 A N T 3 S- 0 0 163 -2,-0.4 3,-0.0 1,-0.2 -2,-0.0 -0.419 126.0 -6.7 56.4 -98.1 11.7 0.3 37.0 45 48 A D T 3 S+ 0 0 152 -2,-0.7 -1,-0.2 1,-0.1 2,-0.2 0.894 121.9 40.0 -97.2 -45.3 14.1 3.0 38.1 46 49 A R E < - E 0 43A 156 -3,-0.9 -3,-2.0 1,-0.0 2,-0.3 -0.664 64.8-123.1-115.3 167.7 12.4 6.4 38.3 47 50 A Q E + E 0 42A 73 -2,-0.2 2,-0.3 -5,-0.2 -5,-0.2 -0.735 42.5 131.4-101.3 148.1 9.1 8.2 39.2 48 51 A G E - E 0 41A 2 -7,-2.1 -7,-2.6 -2,-0.3 2,-0.3 -0.990 46.1 -67.2 180.0 176.9 6.9 10.3 37.0 49 52 A F E +cE 19 40A 55 -31,-2.2 -29,-1.2 -2,-0.3 -9,-0.2 -0.650 36.9 161.8 -96.2 135.1 3.6 11.3 35.4 50 53 A I E - E 0 39A 0 -11,-2.0 -11,-2.6 -2,-0.3 5,-0.1 -0.928 52.7 -70.2-138.1 159.0 1.4 9.4 33.0 51 54 A P E > - E 0 38A 17 0, 0.0 3,-1.6 0, 0.0 4,-0.3 -0.287 32.0-143.0 -57.8 129.7 -2.3 10.0 32.1 52 55 A A G > S+ 0 0 8 -15,-2.2 3,-1.1 1,-0.3 -14,-0.2 0.798 103.4 61.0 -59.0 -29.6 -4.7 9.1 35.0 53 56 A A G 3 S+ 0 0 79 -16,-0.5 -1,-0.3 1,-0.2 -15,-0.1 0.714 95.2 60.2 -70.8 -23.8 -7.0 7.7 32.3 54 57 A Y G < S+ 0 0 78 -3,-1.6 -45,-3.4 -45,-0.1 -44,-0.7 0.539 101.9 69.5 -81.8 -1.6 -4.4 5.2 31.2 55 58 A L E < -B 8 0A 10 -3,-1.1 2,-0.5 -4,-0.3 -47,-0.2 -0.905 64.1-152.9-124.6 145.1 -4.4 3.7 34.7 56 59 A K E -B 7 0A 114 -49,-2.3 -49,-2.2 -2,-0.3 2,-0.3 -0.945 25.8-125.4-116.7 121.4 -6.9 1.6 36.7 57 60 A K E -B 6 0A 70 -2,-0.5 2,-0.9 -51,-0.2 -51,-0.2 -0.529 18.8-154.4 -66.4 123.7 -6.8 1.9 40.5 58 61 A L E B 5 0A 61 -53,-2.3 -53,-0.8 -2,-0.3 -1,-0.1 -0.863 360.0 360.0-102.7 95.8 -6.4 -1.7 41.8 59 62 A D 0 0 186 -2,-0.9 -55,-0.0 -55,-0.1 -53,-0.0 -0.791 360.0 360.0-104.3 360.0 -7.9 -1.4 45.3