==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 20-AUG-08 3E8Y . COMPND 2 MOLECULE: POTASSIUM CHANNEL TOXIN ALPHA-KTX 19.1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.MANDAL,B.L.PENTELUTE,V.TERESHKO,A.A.KOSSIAKOFF,S.B.H.KENT . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2430.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 63.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 26.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 X A 0 0 111 0, 0.0 2,-0.4 0, 0.0 24,-0.0 0.000 360.0 360.0 360.0 173.1 48.9 -0.7 14.2 2 3 X a - 0 0 28 23,-0.1 2,-0.4 4,-0.0 22,-0.1 -0.869 360.0-165.9 -99.5 136.5 47.7 1.1 11.0 3 4 X Y > - 0 0 152 -2,-0.4 4,-2.6 1,-0.1 5,-0.2 -0.990 19.7-134.2-123.0 132.6 47.8 4.9 11.0 4 5 X S H > S+ 0 0 88 -2,-0.4 4,-2.6 1,-0.2 5,-0.2 0.837 99.2 47.0 -54.4 -50.2 45.9 6.7 8.3 5 6 X S H > S+ 0 0 73 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.940 115.6 45.1 -63.6 -48.2 48.4 9.3 7.3 6 7 X D H > S+ 0 0 100 1,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.892 111.9 53.5 -63.5 -38.8 51.3 6.9 7.0 7 8 X b H X S+ 0 0 0 -4,-2.6 4,-2.5 2,-0.2 -2,-0.2 0.948 109.4 47.2 -62.4 -48.5 49.1 4.3 5.1 8 9 X R H X S+ 0 0 62 -4,-2.6 4,-2.7 1,-0.2 5,-0.2 0.921 113.9 48.1 -55.9 -46.3 48.1 6.8 2.5 9 10 X V H X S+ 0 0 97 -4,-2.2 4,-2.5 -5,-0.2 -2,-0.2 0.896 110.8 50.6 -66.6 -40.2 51.6 8.0 2.0 10 11 X K H X S+ 0 0 122 -4,-2.7 4,-1.5 2,-0.2 -1,-0.2 0.931 112.1 48.3 -57.0 -49.6 53.0 4.4 1.8 11 12 X c H <>S+ 0 0 0 -4,-2.5 5,-2.4 -5,-0.2 3,-0.4 0.936 112.5 46.5 -61.4 -46.9 50.4 3.6 -0.8 12 13 X V H ><5S+ 0 0 76 -4,-2.7 3,-1.9 1,-0.2 -1,-0.2 0.910 107.4 58.7 -62.2 -41.0 51.0 6.7 -2.9 13 14 X A H 3<5S+ 0 0 86 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.841 105.5 49.8 -57.2 -34.4 54.8 6.1 -2.7 14 15 X M T 3<5S- 0 0 126 -4,-1.5 -1,-0.3 -3,-0.4 -2,-0.2 0.439 128.2 -97.0 -86.1 1.7 54.3 2.7 -4.4 15 16 X G T < 5S+ 0 0 61 -3,-1.9 -3,-0.2 1,-0.3 -2,-0.1 0.454 82.6 128.9 98.8 5.5 52.2 4.2 -7.2 16 17 X F < - 0 0 72 -5,-2.4 -1,-0.3 -6,-0.2 14,-0.2 -0.385 66.6-116.0 -85.2 169.7 48.7 3.5 -5.8 17 18 X S S S- 0 0 85 12,-1.8 2,-0.3 1,-0.2 13,-0.2 0.873 73.5 -55.8 -75.1 -41.2 46.1 6.2 -5.5 18 19 X S E -A 29 0A 36 11,-1.0 11,-2.4 -7,-0.1 2,-0.3 -0.913 54.3-138.1-174.8-167.2 45.7 6.3 -1.7 19 20 X G E -A 28 0A 7 9,-0.3 2,-0.3 -2,-0.3 9,-0.3 -0.979 3.6-149.5-167.3 168.1 44.9 3.9 1.1 20 21 X K E -A 27 0A 69 7,-2.2 7,-2.7 -2,-0.3 2,-0.5 -0.991 26.8-108.5-145.2 152.0 43.0 3.4 4.3 21 22 X a E +A 26 0A 45 -2,-0.3 2,-0.4 5,-0.2 5,-0.2 -0.696 39.1 171.8 -80.4 124.9 43.3 1.5 7.5 22 23 X I E > -A 25 0A 85 3,-2.7 3,-2.1 -2,-0.5 -2,-0.0 -0.986 69.2 -19.2-136.8 118.5 40.8 -1.4 7.7 23 24 X N T 3 S- 0 0 139 -2,-0.4 3,-0.1 1,-0.3 -1,-0.1 0.887 128.0 -50.3 53.1 44.9 41.0 -4.0 10.5 24 25 X S T 3 S+ 0 0 98 1,-0.2 2,-0.4 -22,-0.1 -1,-0.3 0.503 117.4 112.8 73.3 6.7 44.6 -3.1 11.3 25 26 X K E < -A 22 0A 97 -3,-2.1 -3,-2.7 -23,-0.1 2,-0.9 -0.915 67.5-132.8-114.5 137.7 45.6 -3.4 7.7 26 27 X b E -A 21 0A 42 -2,-0.4 2,-0.6 -5,-0.2 -5,-0.2 -0.787 31.0-170.7 -86.5 107.6 46.8 -0.6 5.4 27 28 X K E -A 20 0A 109 -7,-2.7 -7,-2.2 -2,-0.9 2,-0.2 -0.898 9.0-146.0-107.2 114.2 44.7 -1.3 2.2 28 29 X c E -A 19 0A 48 -2,-0.6 2,-0.4 -9,-0.3 -9,-0.3 -0.498 8.3-132.1 -80.1 148.6 45.6 0.7 -0.8 29 30 X Y E A 18 0A 127 -11,-2.4 -12,-1.8 -2,-0.2 -11,-1.0 -0.827 360.0 360.0 -85.2 133.3 43.2 1.9 -3.5 30 31 X K 0 0 189 -2,-0.4 -14,-0.1 -14,-0.2 -1,-0.1 -0.269 360.0 360.0 -54.5 360.0 44.6 1.1 -6.9