==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 13-FEB-07 2ECB . COMPND 2 MOLECULE: ZINC FINGERS AND HOMEOBOXES PROTEIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.OHNISHI,N.TOCHIO,A.SASAGAWA,K.SAITO,S.KOSHIBA,M.INOUE, . 89 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 8652.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 55.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 12.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 37.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 137 0, 0.0 2,-0.2 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0-129.2 25.5 -32.9 26.9 2 2 A S - 0 0 108 1,-0.1 3,-0.0 2,-0.1 0, 0.0 -0.596 360.0-107.4 -93.3 155.1 23.7 -30.9 24.3 3 3 A S - 0 0 122 -2,-0.2 2,-0.2 1,-0.1 -1,-0.1 0.922 57.6-118.0 -41.8 -62.5 23.7 -31.7 20.6 4 4 A G - 0 0 62 1,-0.1 -1,-0.1 3,-0.1 -2,-0.1 -0.626 64.0 -21.7 160.7 -95.5 26.0 -28.8 19.7 5 5 A S - 0 0 93 -2,-0.2 -1,-0.1 -3,-0.0 -2,-0.1 0.722 55.5-161.5-115.1 -45.7 25.0 -25.9 17.5 6 6 A S S S- 0 0 113 -3,-0.1 -3,-0.0 0, 0.0 -2,-0.0 0.832 71.5 -42.7 62.2 32.6 22.1 -27.1 15.4 7 7 A G S S- 0 0 44 2,-0.0 3,-0.1 3,-0.0 -3,-0.1 0.230 76.5 -83.5 90.6 145.2 22.7 -24.3 12.9 8 8 A P - 0 0 128 0, 0.0 2,-0.4 0, 0.0 -3,-0.0 0.065 56.5 -76.5 -69.8-174.7 23.6 -20.6 13.5 9 9 A D - 0 0 126 1,-0.1 -2,-0.0 0, 0.0 0, 0.0 -0.713 51.2-102.5 -91.5 138.1 21.1 -17.8 14.2 10 10 A F - 0 0 168 -2,-0.4 -1,-0.1 -3,-0.1 -3,-0.0 -0.219 36.5-137.2 -56.5 143.7 19.0 -16.3 11.3 11 11 A T - 0 0 110 1,-0.1 -1,-0.1 2,-0.0 0, 0.0 -0.833 14.9-113.4-109.2 145.2 20.3 -13.0 10.0 12 12 A P + 0 0 121 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.219 33.2 179.6 -69.8 162.0 18.1 -9.9 9.1 13 13 A Q - 0 0 138 2,-0.0 2,-0.0 0, 0.0 -2,-0.0 -0.879 23.3-124.6-167.9 132.3 17.8 -8.6 5.5 14 14 A K - 0 0 186 -2,-0.3 2,-0.4 1,-0.1 40,-0.0 -0.308 15.2-140.7 -75.6 162.1 15.9 -5.8 3.8 15 15 A F + 0 0 61 39,-0.1 2,-0.8 -2,-0.0 -1,-0.1 -0.714 32.6 158.3-128.0 81.2 13.5 -6.3 0.9 16 16 A K + 0 0 195 -2,-0.4 2,-0.2 1,-0.1 -2,-0.0 -0.502 50.5 83.5-101.6 62.9 13.9 -3.5 -1.7 17 17 A E + 0 0 177 -2,-0.8 2,-0.3 2,-0.0 -1,-0.1 -0.691 46.1 147.5-166.7 106.7 12.5 -5.3 -4.7 18 18 A K - 0 0 48 -2,-0.2 2,-0.3 4,-0.0 -2,-0.0 -0.963 38.4-118.1-141.5 157.6 8.8 -5.6 -5.6 19 19 A T >> - 0 0 65 -2,-0.3 4,-2.7 29,-0.1 3,-0.7 -0.745 28.3-116.6 -98.9 144.9 6.7 -5.9 -8.8 20 20 A A H 3> S+ 0 0 79 -2,-0.3 4,-2.6 1,-0.3 5,-0.1 0.823 118.7 55.0 -44.0 -36.3 4.0 -3.3 -9.7 21 21 A E H 3> S+ 0 0 147 2,-0.2 4,-0.6 1,-0.2 -1,-0.3 0.932 110.9 42.2 -65.3 -47.3 1.5 -6.2 -9.4 22 22 A Q H X> S+ 0 0 44 -3,-0.7 4,-2.2 2,-0.2 3,-0.9 0.948 118.0 45.6 -65.0 -50.4 2.6 -7.0 -5.8 23 23 A L H 3X>S+ 0 0 65 -4,-2.7 4,-3.3 1,-0.3 5,-0.6 0.963 102.3 62.9 -57.6 -56.1 2.8 -3.3 -4.7 24 24 A R H 3X5S+ 0 0 209 -4,-2.6 4,-0.6 -5,-0.3 -1,-0.3 0.760 112.4 42.1 -41.0 -27.5 -0.5 -2.3 -6.3 25 25 A V H X S+ 0 0 11 -4,-1.6 4,-2.1 -3,-0.4 3,-0.7 0.891 109.2 55.0 -96.0 -64.3 -4.3 -2.8 1.5 30 30 A F H 3< S+ 0 0 4 -4,-3.0 -3,-0.2 1,-0.3 -2,-0.1 0.813 105.9 60.5 -39.3 -37.1 -1.9 -1.0 3.9 31 31 A L H 3< S+ 0 0 103 -4,-1.1 3,-0.5 -5,-0.4 -1,-0.3 0.969 106.0 42.5 -57.7 -57.8 -4.0 2.1 3.1 32 32 A N H << S+ 0 0 141 -3,-0.7 2,-0.4 -4,-0.5 -2,-0.2 0.921 135.4 18.0 -55.6 -47.3 -7.3 0.7 4.4 33 33 A S < - 0 0 52 -4,-2.1 -1,-0.3 1,-0.1 -2,-0.1 -0.812 64.7-169.8-132.2 92.8 -5.5 -0.8 7.4 34 34 A S S S+ 0 0 41 -3,-0.5 2,-0.5 -2,-0.4 29,-0.2 0.856 79.3 67.0 -46.5 -40.2 -2.1 0.7 8.2 35 35 A V S S- 0 0 78 -3,-0.1 2,-0.2 28,-0.0 21,-0.0 -0.751 87.0-133.1 -90.0 126.0 -1.7 -2.1 10.7 36 36 A L - 0 0 27 -2,-0.5 2,-0.3 20,-0.1 -2,-0.1 -0.530 21.0-156.3 -78.2 141.7 -1.5 -5.6 9.3 37 37 A T > - 0 0 62 -2,-0.2 4,-3.3 -4,-0.1 5,-0.3 -0.823 32.5-107.1-118.2 157.8 -3.6 -8.4 10.9 38 38 A D H > S+ 0 0 135 -2,-0.3 4,-1.1 2,-0.2 -1,-0.1 0.822 122.2 43.5 -48.7 -33.9 -3.3 -12.2 11.0 39 39 A E H >> S+ 0 0 139 2,-0.2 4,-1.4 1,-0.1 3,-0.8 0.985 114.4 42.9 -76.0 -69.4 -6.2 -12.2 8.6 40 40 A E H 3> S+ 0 0 41 1,-0.3 4,-2.2 2,-0.2 5,-0.2 0.838 110.0 63.1 -45.8 -37.4 -5.3 -9.5 6.1 41 41 A L H 3X S+ 0 0 27 -4,-3.3 4,-2.4 2,-0.2 -1,-0.3 0.946 102.2 47.7 -54.3 -53.6 -1.8 -10.9 6.2 42 42 A N H XX S+ 0 0 79 -4,-1.1 4,-1.3 -3,-0.8 3,-0.6 0.970 108.6 52.6 -52.2 -63.2 -2.8 -14.2 4.8 43 43 A R H >X S+ 0 0 159 -4,-1.4 4,-1.9 1,-0.3 3,-1.2 0.888 113.7 44.2 -39.2 -54.6 -4.9 -12.8 1.9 44 44 A L H 3X>S+ 0 0 1 -4,-2.2 4,-2.9 1,-0.3 5,-0.7 0.859 102.4 67.2 -61.6 -36.2 -1.9 -10.7 0.9 45 45 A R H <<5S+ 0 0 91 -4,-2.4 -1,-0.3 -3,-0.6 -2,-0.2 0.783 111.3 35.3 -55.4 -27.4 0.4 -13.7 1.3 46 46 A A H <<5S+ 0 0 70 -4,-1.3 -1,-0.2 -3,-1.2 -2,-0.2 0.757 119.9 48.5 -96.3 -31.9 -1.4 -15.2 -1.6 47 47 A Q H <5S+ 0 0 88 -4,-1.9 -2,-0.2 -5,-0.3 -3,-0.2 0.969 122.7 30.7 -72.6 -56.4 -2.0 -12.0 -3.6 48 48 A T T <5S- 0 0 1 -4,-2.9 -1,-0.2 -5,-0.1 -3,-0.2 0.591 97.5-140.0 -78.4 -10.8 1.6 -10.6 -3.4 49 49 A K < + 0 0 169 -5,-0.7 -4,-0.2 1,-0.2 -3,-0.2 0.770 61.1 126.5 56.1 25.8 2.9 -14.2 -3.3 50 50 A L - 0 0 31 -6,-0.5 2,-0.2 1,-0.1 -1,-0.2 -0.384 65.4 -83.7-103.2-176.6 5.4 -12.9 -0.8 51 51 A T > - 0 0 67 -2,-0.1 4,-2.4 1,-0.1 5,-0.2 -0.547 31.1-118.9 -89.4 155.6 6.3 -14.0 2.7 52 52 A R H > S+ 0 0 124 1,-0.2 4,-2.1 2,-0.2 5,-0.2 0.876 116.1 51.6 -58.7 -39.0 4.5 -13.0 5.9 53 53 A R H > S+ 0 0 183 2,-0.2 4,-2.6 1,-0.2 -1,-0.2 0.915 109.5 49.4 -64.9 -44.4 7.6 -11.3 7.2 54 54 A E H > S+ 0 0 36 2,-0.2 4,-2.5 3,-0.2 -2,-0.2 0.968 112.8 45.8 -59.4 -56.7 8.1 -9.3 4.0 55 55 A I H X S+ 0 0 0 -4,-2.4 4,-2.4 2,-0.2 3,-0.3 0.962 115.8 45.0 -50.9 -61.8 4.5 -8.0 3.9 56 56 A D H X S+ 0 0 72 -4,-2.1 4,-2.1 1,-0.2 -1,-0.2 0.935 111.9 52.3 -48.3 -55.7 4.4 -7.1 7.6 57 57 A A H X S+ 0 0 43 -4,-2.6 4,-1.9 -5,-0.2 -1,-0.2 0.878 110.2 50.5 -49.5 -42.6 7.8 -5.5 7.4 58 58 A W H X S+ 0 0 14 -4,-2.5 4,-2.5 -3,-0.3 -1,-0.2 0.973 105.2 53.5 -61.4 -57.1 6.6 -3.4 4.4 59 59 A F H X S+ 0 0 3 -4,-2.4 4,-1.5 1,-0.2 -1,-0.2 0.864 109.9 52.3 -45.7 -42.0 3.4 -2.2 6.1 60 60 A T H >X S+ 0 0 69 -4,-2.1 3,-1.1 -5,-0.2 4,-0.8 0.995 108.3 45.1 -59.3 -69.9 5.6 -0.9 9.0 61 61 A E H >X S+ 0 0 99 -4,-1.9 4,-1.2 1,-0.3 3,-1.1 0.885 105.7 64.5 -40.6 -51.2 8.1 1.1 7.0 62 62 A K H >X S+ 0 0 58 -4,-2.5 4,-1.2 1,-0.3 3,-1.0 0.893 92.1 62.8 -39.9 -54.9 5.3 2.6 5.0 63 63 A K H XX S+ 0 0 85 -4,-1.5 4,-1.4 -3,-1.1 3,-1.0 0.880 98.9 55.1 -38.5 -52.8 3.9 4.3 8.1 64 64 A K H