==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 13-FEB-07 2ECM . COMPND 2 MOLECULE: RING FINGER AND CHY ZINC FINGER DOMAIN- . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR K.MIYAMOTO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA, . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4523.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 49.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 7.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 12.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 9.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 16.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 136 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 158.7 10.6 -4.1 -20.5 2 2 A S + 0 0 102 1,-0.1 3,-0.1 3,-0.0 0, 0.0 -0.836 360.0 166.5-152.3 108.6 10.8 -4.0 -16.7 3 3 A S S S+ 0 0 130 -2,-0.3 2,-0.6 1,-0.2 -1,-0.1 0.902 71.9 56.2 -86.6 -48.6 13.6 -5.4 -14.6 4 4 A G - 0 0 50 2,-0.1 2,-1.4 1,-0.1 -1,-0.2 -0.780 69.8-151.2 -92.4 120.8 12.7 -3.8 -11.2 5 5 A S + 0 0 88 -2,-0.6 2,-0.5 -3,-0.1 -1,-0.1 -0.199 64.0 112.3 -81.6 46.0 9.2 -4.5 -9.9 6 6 A S + 0 0 116 -2,-1.4 2,-0.2 2,-0.1 9,-0.1 -0.852 50.8 69.5-124.3 95.4 9.2 -1.2 -8.1 7 7 A G S S- 0 0 29 -2,-0.5 7,-0.1 23,-0.1 24,-0.0 -0.847 91.2 -57.0 167.8 156.3 6.7 1.3 -9.5 8 8 A C > - 0 0 0 5,-0.5 4,-2.5 -2,-0.2 5,-0.3 -0.295 40.9-160.8 -53.2 107.8 3.1 2.2 -10.0 9 9 A P T 4 S+ 0 0 27 0, 0.0 -1,-0.2 0, 0.0 22,-0.1 0.535 85.7 61.1 -69.7 -5.6 1.6 -0.8 -11.8 10 10 A I T 4 S+ 0 0 43 3,-0.1 -2,-0.1 1,-0.0 21,-0.0 0.943 125.2 8.5 -85.2 -59.4 -1.3 1.4 -12.9 11 11 A C T 4 S- 0 0 43 2,-0.1 -3,-0.0 21,-0.0 -1,-0.0 0.680 92.3-136.3 -94.9 -22.8 0.5 4.1 -14.9 12 12 A L < + 0 0 139 -4,-2.5 2,-0.4 1,-0.2 -5,-0.0 0.956 55.6 135.0 65.1 52.2 3.9 2.4 -14.9 13 13 A E - 0 0 128 -5,-0.3 -5,-0.5 0, 0.0 -1,-0.2 -0.973 67.4 -98.8-137.4 121.4 5.8 5.6 -14.2 14 14 A D - 0 0 115 -2,-0.4 2,-0.1 -7,-0.1 -7,-0.1 -0.055 46.5-127.4 -37.2 115.3 8.7 5.9 -11.7 15 15 A I - 0 0 34 -9,-0.1 2,-0.4 15,-0.1 3,-0.1 -0.435 18.9-159.2 -72.3 143.8 7.0 7.5 -8.6 16 16 A H > - 0 0 84 1,-0.2 4,-3.0 -2,-0.1 3,-0.5 -0.822 8.4-167.9-129.1 93.0 8.5 10.6 -7.1 17 17 A T T 4 S+ 0 0 102 -2,-0.4 -1,-0.2 1,-0.3 5,-0.0 0.884 93.5 51.4 -42.5 -49.2 7.5 11.3 -3.5 18 18 A S T 4 S+ 0 0 122 1,-0.2 -1,-0.3 -3,-0.1 3,-0.1 0.916 113.4 44.4 -56.8 -46.0 9.0 14.8 -3.8 19 19 A R T 4 S- 0 0 191 -3,-0.5 2,-0.3 1,-0.2 -2,-0.2 0.964 133.1 -7.5 -63.9 -54.3 7.0 15.4 -7.0 20 20 A V S < S- 0 0 75 -4,-3.0 -1,-0.2 13,-0.0 -4,-0.0 -0.955 83.9 -84.2-143.1 160.7 3.7 13.9 -5.6 21 21 A V - 0 0 95 -2,-0.3 12,-1.0 -3,-0.1 2,-0.5 -0.328 39.5-145.5 -65.2 145.3 2.4 12.0 -2.6 22 22 A A E -A 32 0A 28 10,-0.2 2,-0.8 11,-0.1 10,-0.2 -0.963 6.0-137.7-119.6 127.0 2.8 8.2 -2.7 23 23 A H E -A 31 0A 59 8,-1.3 2,-1.0 -2,-0.5 8,-0.7 -0.721 16.5-144.3 -85.1 110.4 0.3 5.8 -1.2 24 24 A V E -A 30 0A 99 -2,-0.8 6,-0.2 6,-0.2 -1,-0.0 -0.634 19.1-139.9 -78.0 102.4 2.1 3.1 0.7 25 25 A L > - 0 0 15 4,-2.8 3,-0.7 -2,-1.0 4,-0.3 -0.172 19.5-114.2 -59.6 153.8 0.1 -0.1 0.1 26 26 A P T 3 S+ 0 0 133 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.442 116.5 56.1 -69.8 1.9 -0.4 -2.5 3.1 27 27 A C T 3 S- 0 0 60 2,-0.1 -3,-0.0 0, 0.0 -2,-0.0 0.693 127.5 -88.8-104.0 -28.4 1.6 -5.0 1.0 28 28 A G S < S+ 0 0 54 -3,-0.7 2,-0.3 1,-0.3 -4,-0.1 0.686 84.5 114.6 120.7 41.2 4.8 -2.9 0.5 29 29 A H - 0 0 37 -4,-0.3 -4,-2.8 -6,-0.1 2,-0.4 -0.907 53.6-127.2-135.3 162.9 4.2 -0.9 -2.7 30 30 A L E +A 24 0A 70 -2,-0.3 2,-0.2 -6,-0.2 -6,-0.2 -0.880 27.5 171.8-114.2 144.9 3.8 2.8 -3.7 31 31 A L E -A 23 0A 0 -8,-0.7 -8,-1.3 -2,-0.4 2,-0.5 -0.772 34.9 -94.0-137.7-177.8 1.1 4.4 -5.8 32 32 A H E > -A 22 0A 23 -2,-0.2 4,-3.0 -10,-0.2 5,-0.5 -0.913 27.3-127.7-109.1 125.1 -0.2 7.8 -6.9 33 33 A R T 4 S+ 0 0 146 -12,-1.0 4,-0.3 -2,-0.5 -1,-0.1 0.789 115.7 44.3 -34.4 -36.3 -3.0 9.5 -4.9 34 34 A T T >> S+ 0 0 96 2,-0.2 3,-1.5 1,-0.1 4,-1.0 0.959 113.8 45.5 -76.7 -55.3 -4.7 9.7 -8.3 35 35 A C H >> S+ 0 0 12 1,-0.3 4,-2.5 2,-0.2 3,-1.5 0.918 106.1 60.7 -54.3 -47.3 -4.1 6.2 -9.5 36 36 A Y H 3X S+ 0 0 71 -4,-3.0 4,-0.7 1,-0.3 -1,-0.3 0.755 106.2 49.5 -53.0 -24.2 -5.1 4.7 -6.1 37 37 A E H <> S+ 0 0 91 -3,-1.5 4,-0.8 -5,-0.5 -1,-0.3 0.700 111.1 49.0 -87.7 -22.5 -8.4 6.4 -6.8 38 38 A E H XX S+ 0 0 110 -3,-1.5 4,-2.2 -4,-1.0 3,-0.5 0.940 109.1 48.2 -81.0 -53.1 -8.7 4.9 -10.3 39 39 A M H 3X>S+ 0 0 9 -4,-2.5 4,-2.3 1,-0.2 5,-1.5 0.866 106.8 60.1 -55.5 -38.2 -7.9 1.3 -9.5 40 40 A L H 3<5S+ 0 0 100 -4,-0.7 -1,-0.2 -5,-0.4 -2,-0.2 0.903 107.8 44.5 -57.4 -43.4 -10.4 1.4 -6.6 41 41 A K H <<5S+ 0 0 152 -4,-0.8 -2,-0.2 -3,-0.5 -1,-0.2 0.972 111.1 52.0 -65.9 -56.3 -13.2 2.2 -9.0 42 42 A E H <5S- 0 0 162 -4,-2.2 -2,-0.2 1,-0.1 -3,-0.1 0.937 111.8-115.9 -44.6 -62.3 -12.3 -0.3 -11.7 43 43 A G T <5S+ 0 0 64 -4,-2.3 2,-0.4 1,-0.3 -3,-0.2 0.630 70.2 118.8 125.4 34.8 -12.2 -3.2 -9.2 44 44 A Y < - 0 0 71 -5,-1.5 -1,-0.3 11,-0.0 2,-0.1 -0.994 43.1-154.2-133.3 130.9 -8.6 -4.4 -9.1 45 45 A R - 0 0 191 -2,-0.4 -5,-0.0 1,-0.2 0, 0.0 -0.336 61.5 -32.2 -93.1 177.5 -6.2 -4.5 -6.2 46 46 A C > - 0 0 21 1,-0.2 3,-0.6 -2,-0.1 -1,-0.2 0.031 57.9-164.0 -32.5 95.9 -2.4 -4.4 -6.1 47 47 A P T 3 S+ 0 0 77 0, 0.0 -1,-0.2 0, 0.0 3,-0.1 0.435 82.9 64.4 -69.7 2.4 -1.9 -6.3 -9.4 48 48 A L T 3 S+ 0 0 60 1,-0.2 2,-1.7 2,-0.1 -2,-0.1 0.838 85.8 68.9 -92.7 -41.3 1.7 -6.9 -8.3 49 49 A C S < S- 0 0 57 -3,-0.6 -1,-0.2 1,-0.0 -4,-0.0 -0.586 91.2-134.7 -82.5 82.4 1.1 -9.0 -5.2 50 50 A S + 0 0 118 -2,-1.7 -2,-0.1 -3,-0.1 5,-0.1 0.045 35.3 172.5 -35.7 138.7 -0.1 -12.2 -6.9 51 51 A G - 0 0 51 1,-0.4 -1,-0.1 3,-0.2 4,-0.1 -0.450 31.6 -44.3-132.4-154.3 -3.2 -13.5 -5.2 52 52 A P S S- 0 0 105 0, 0.0 -1,-0.4 0, 0.0 0, 0.0 0.070 81.4 -64.5 -69.8-174.1 -6.0 -16.2 -5.5 53 53 A S S S+ 0 0 132 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.895 120.2 68.1 -37.5 -61.3 -7.9 -17.1 -8.7 54 54 A S 0 0 80 0, 0.0 -3,-0.2 0, 0.0 0, 0.0 -0.116 360.0 360.0 -59.5 160.4 -9.5 -13.6 -8.8 55 55 A G 0 0 120 -12,-0.1 -9,-0.1 -5,-0.1 -5,-0.1 -0.425 360.0 360.0 86.0 360.0 -7.3 -10.6 -9.6