==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ION TRANSPORT 28-JAN-00 1EDV . COMPND 2 MOLECULE: RHODOPSIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR P.L.YEAGLE,A.SALLOUM,A.CHOPRA,N.BHAWSAR,L.ALI . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2923.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 17.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 20.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 190 0, 0.0 2,-2.7 0, 0.0 3,-0.3 0.000 360.0 360.0 360.0 -74.1 7.6 10.8 5.8 2 2 A V + 0 0 69 1,-0.2 5,-0.3 3,-0.1 0, 0.0 -0.340 360.0 152.5 -75.5 62.9 6.4 7.9 3.7 3 3 A G S >>>S+ 0 0 13 -2,-2.7 4,-3.0 3,-0.2 3,-0.9 0.946 71.9 46.8 -58.2 -50.0 3.3 7.4 5.8 4 4 A W T 345S+ 0 0 156 -3,-0.3 2,-2.0 1,-0.3 4,-0.2 0.985 112.6 47.4 -55.3 -66.2 1.4 5.9 2.8 5 5 A S T 345S+ 0 0 52 1,-0.2 -1,-0.3 3,-0.1 -2,-0.1 -0.169 126.3 27.6 -77.3 48.3 4.2 3.5 1.7 6 6 A R T <45S+ 0 0 114 -2,-2.0 -1,-0.2 -3,-0.9 -2,-0.2 0.214 119.5 43.6-164.3 -43.9 4.8 2.2 5.3 7 7 A Y T ><5S+ 0 0 123 -4,-3.0 3,-1.7 -5,-0.3 7,-0.3 0.963 115.6 34.0 -76.3 -75.6 1.6 2.5 7.4 8 8 A I T 3> S- 0 0 94 -3,-1.7 4,-1.1 4,-0.2 3,-0.2 -0.399 108.0 -75.7 -76.5 69.0 1.4 -3.2 6.4 11 11 A G T 4 S- 0 0 45 -2,-2.6 2,-2.6 1,-0.2 -1,-0.2 0.795 76.3 -69.9 43.8 59.3 -1.2 -6.1 6.2 12 12 A M T >< S+ 0 0 110 -4,-0.6 3,-1.0 1,-0.2 -1,-0.2 -0.242 118.8 91.4 72.1 -51.3 -4.5 -4.3 7.5 13 13 A Q T 34 S+ 0 0 160 -2,-2.6 2,-1.3 1,-0.3 -1,-0.2 0.863 84.6 50.8 -43.9 -54.6 -3.3 -3.9 11.1 14 14 A C T 3< S+ 0 0 55 -4,-1.1 -1,-0.3 -7,-0.3 2,-0.2 -0.179 131.2 8.7 -82.2 44.9 -1.7 -0.4 10.6 15 15 A S < - 0 0 47 -2,-1.3 -7,-0.0 -3,-1.0 0, 0.0 -0.841 66.8-137.1-179.4-150.0 -5.1 0.7 8.9 16 16 A C S S+ 0 0 113 -2,-0.2 -3,-0.1 -8,-0.0 -2,-0.1 0.086 98.9 26.1-160.4 -39.5 -8.5 -0.9 8.5 17 17 A G S S- 0 0 40 -5,-0.0 5,-0.4 4,-0.0 -2,-0.0 0.758 89.8-142.8 -99.3 -34.7 -9.5 -0.1 4.9 18 18 A I > - 0 0 19 -6,-0.2 4,-1.4 3,-0.1 -3,-0.1 0.991 7.9-155.0 58.4 91.0 -6.0 0.2 3.2 19 19 A D T 4 S+ 0 0 114 3,-0.2 5,-0.4 2,-0.1 -1,-0.1 0.765 94.4 52.5 -59.5 -25.9 -6.2 2.9 0.5 20 20 A Y T > S+ 0 0 39 3,-0.1 4,-3.0 -16,-0.1 -1,-0.1 0.923 118.7 23.2 -68.0 -92.3 -3.3 1.0 -1.1 21 21 A Y H > S+ 0 0 92 3,-0.2 4,-0.9 1,-0.2 5,-0.3 0.843 120.8 52.1 -45.9 -57.7 -4.4 -2.7 -1.4 22 22 A T H < S+ 0 0 109 -4,-1.4 -1,-0.2 -5,-0.4 -3,-0.2 0.917 124.7 25.6 -62.6 -51.6 -8.2 -2.4 -1.4 23 23 A P H 4 S- 0 0 73 0, 0.0 -1,-0.2 0, 0.0 -2,-0.2 0.961 143.5 -31.0 -59.5 -57.4 -8.4 0.3 -4.2 24 24 A H H < S+ 0 0 82 -4,-3.0 -3,-0.2 -5,-0.4 -2,-0.2 -0.512 77.5 122.1-177.3 95.0 -5.1 -0.7 -5.9 25 25 A E S >X S+ 0 0 8 -4,-0.9 4,-2.7 3,-0.1 2,-1.9 0.582 84.6 60.0-109.7 -45.4 -1.8 -2.1 -4.6 26 26 A E T 34 S+ 0 0 145 -5,-0.3 -5,-0.0 1,-0.3 -6,-0.0 -0.161 118.1 33.1 -75.4 41.8 -1.8 -5.3 -6.9 27 27 A T T 34 S+ 0 0 94 -2,-1.9 -1,-0.3 -3,-0.0 6,-0.0 -0.091 128.1 38.8 173.1 45.6 -1.9 -2.9 -9.9 28 28 A N T <4 S+ 0 0 75 -3,-1.2 4,-0.2 0, 0.0 -2,-0.2 0.191 106.8 42.5-169.7 -58.6 0.2 -0.1 -8.4 29 29 A N S >< S+ 0 0 69 -4,-2.7 3,-0.6 2,-0.1 -3,-0.1 0.970 103.2 23.4 -85.1 -88.4 3.2 -1.1 -6.2 30 30 A E T 3 S+ 0 0 122 1,-0.2 4,-0.2 -5,-0.2 3,-0.2 0.906 128.1 2.2 -64.0 -61.8 5.6 -3.9 -6.9 31 31 A S T 3 S+ 0 0 58 1,-0.2 -1,-0.2 2,-0.1 -2,-0.1 -0.311 111.8 75.7-128.6 46.0 5.9 -4.8 -10.7 32 32 A F S < S+ 0 0 89 -3,-0.6 2,-0.2 -4,-0.2 -1,-0.2 -0.051 97.3 54.7-167.1 55.2 3.6 -2.3 -12.4 33 33 A V 0 0 95 -3,-0.2 -2,-0.1 -4,-0.1 -3,-0.1 0.163 360.0 360.0 58.6 174.8 5.9 -0.1 -11.9 34 34 A I 0 0 194 -2,-0.2 -3,-0.1 -4,-0.2 -4,-0.0 0.199 360.0 360.0 77.7 360.0 8.9 -1.8 -13.5