==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ION TRANSPORT 28-JAN-00 1EDX . COMPND 2 MOLECULE: RHODOPSIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR P.L.YEAGLE,A.SALLOUM,A.CHOPRA,N.BHAWSAR,L.ALI . 40 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2891.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 52.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 15.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 15.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 138 0, 0.0 2,-2.5 0, 0.0 37,-0.2 0.000 360.0 360.0 360.0-117.7 9.8 0.8 -2.7 2 2 A N + 0 0 111 36,-0.1 35,-0.2 35,-0.1 2,-0.1 -0.502 360.0 0.9 65.6 -67.6 10.1 -1.5 -5.8 3 3 A G S S- 0 0 16 -2,-2.5 34,-0.1 33,-0.8 30,-0.0 -0.015 79.4-176.6 -99.1-141.4 7.2 0.7 -6.9 4 4 A T - 0 0 60 -2,-0.1 2,-1.1 -3,-0.0 32,-0.2 -0.087 13.1-172.1-175.5 -55.7 6.0 3.4 -4.5 5 5 A E > + 0 0 54 1,-0.1 3,-2.8 2,-0.0 6,-0.1 0.022 34.9 149.9 62.6 -27.9 2.9 5.4 -5.7 6 6 A G T 3 + 0 0 32 -2,-1.1 5,-0.1 1,-0.3 -1,-0.1 0.370 64.5 34.9 9.0 -79.7 3.5 7.7 -2.7 7 7 A P T 3 S+ 0 0 134 0, 0.0 4,-0.3 0, 0.0 -1,-0.3 0.768 106.6 83.5 -60.2 -34.3 2.1 11.1 -4.0 8 8 A N S X S+ 0 0 69 -3,-2.8 3,-0.8 1,-0.2 0, 0.0 0.037 71.3 23.8 -84.4-179.9 -0.7 9.8 -6.1 9 9 A F T 3 S- 0 0 93 1,-0.2 5,-0.3 2,-0.1 6,-0.3 0.790 118.0 -56.2 34.3 69.9 -4.4 8.7 -5.9 10 10 A Y T 3 S- 0 0 192 -3,-0.1 4,-0.3 2,-0.1 -1,-0.2 0.788 121.2 -29.4 50.0 44.3 -5.8 10.3 -2.7 11 11 A V S X S- 0 0 105 -3,-0.8 3,-3.0 -4,-0.3 4,-0.2 0.808 81.8-109.3 69.6 112.5 -3.1 8.8 -0.5 12 12 A P T 3 S+ 0 0 6 0, 0.0 4,-0.4 0, 0.0 3,-0.2 0.370 113.0 77.2 -69.5 8.3 -2.1 5.5 -2.2 13 13 A F T 3> S+ 0 0 76 1,-0.1 4,-0.9 2,-0.1 5,-0.3 0.858 82.7 73.0 -58.5 -43.6 -3.8 3.4 0.6 14 14 A S T <4 S+ 0 0 57 -3,-3.0 -1,-0.1 -5,-0.3 4,-0.1 0.743 104.3 27.8 -52.1 -38.4 -7.0 4.3 -1.2 15 15 A N T >4 S+ 0 0 48 -6,-0.3 3,-0.6 -4,-0.2 4,-0.4 0.891 120.1 25.7 -91.8 -90.3 -6.5 2.0 -4.3 16 16 A K T 3>>S+ 0 0 22 -4,-0.4 4,-2.9 1,-0.2 5,-0.6 0.327 90.9 93.0 -82.2 11.9 -4.5 -1.2 -4.2 17 17 A T H 3X5S+ 0 0 15 -4,-0.9 4,-2.4 2,-0.2 -1,-0.2 0.993 90.6 45.2 -56.2 -64.0 -4.9 -2.2 -0.5 18 18 A G H <45S+ 0 0 46 -3,-0.6 4,-0.2 -5,-0.3 -1,-0.2 0.832 119.2 45.4 -47.2 -41.6 -8.0 -4.3 -1.1 19 19 A V H 45S+ 0 0 116 -4,-0.4 3,-0.4 2,-0.1 -2,-0.2 0.986 128.9 16.4 -68.6 -64.6 -6.2 -5.9 -4.2 20 20 A V H <5S+ 0 0 64 -4,-2.9 -3,-0.2 1,-0.2 -2,-0.2 0.828 138.7 28.7 -88.2 -37.1 -2.7 -6.7 -3.0 21 21 A R S <> + 0 0 61 -4,-0.1 3,-1.7 2,-0.1 4,-0.5 0.852 66.0 66.7 -94.6 -51.0 -2.7 -6.0 7.9 26 26 A A H >> S+ 0 0 0 1,-0.3 4,-3.0 2,-0.2 3,-2.0 0.790 89.4 62.9 -49.9 -47.7 -0.5 -3.2 6.4 27 27 A P H 34 S+ 0 0 19 0, 0.0 4,-0.3 0, 0.0 -1,-0.3 0.804 102.4 52.4 -50.2 -34.9 -2.8 -0.2 7.3 28 28 A Q H <4 S+ 0 0 115 -3,-1.7 -2,-0.2 -4,-0.1 3,-0.1 0.733 123.3 27.3 -70.8 -24.1 -2.3 -0.9 11.0 29 29 A Y H << S+ 0 0 183 -3,-2.0 -3,-0.1 -4,-0.5 2,-0.1 0.804 131.2 7.1-109.8 -44.6 1.5 -1.0 10.7 30 30 A Y < - 0 0 83 -4,-3.0 2,-2.5 2,-0.0 -2,-0.1 -0.576 45.0-172.2-157.6 83.7 2.8 1.2 7.9 31 31 A L + 0 0 111 -4,-0.3 -18,-0.1 -2,-0.1 -5,-0.0 -0.448 67.2 92.4 -70.7 67.9 0.6 3.5 5.8 32 32 A A S S- 0 0 56 -2,-2.5 -1,-0.1 -20,-0.1 -28,-0.0 0.435 103.8 -52.6-123.0 -95.9 3.5 4.1 3.4 33 33 A E S >S+ 0 0 48 -3,-0.1 5,-0.7 7,-0.1 6,-0.2 0.057 85.6 122.4-141.5 24.2 4.1 2.0 0.2 34 34 A P I >S+ 0 0 3 0, 0.0 5,-2.3 0, 0.0 -3,-0.1 0.839 78.8 46.8 -66.4 -34.5 4.0 -1.7 1.4 35 35 A W I 5S+ 0 0 2 3,-0.2 2,-1.9 1,-0.2 -2,-0.1 0.878 92.9 80.0 -73.4 -43.1 1.2 -2.7 -0.9 36 36 A E I 5S- 0 0 42 -32,-0.2 2,-1.5 1,-0.2 -33,-0.8 -0.534 127.2 -63.2 -79.4 82.8 2.4 -1.1 -4.1 37 37 A F I 5S+ 0 0 126 -2,-1.9 -1,-0.2 1,-0.2 3,-0.2 0.029 121.0 95.2 73.9 -28.7 5.0 -3.7 -5.3 38 38 A S I < - 0 0 14 -2,-1.5 2,-2.5 -5,-0.7 -1,-0.2 0.921 54.4-179.2 -52.9 -50.9 7.2 -3.2 -2.2 39 39 A M < 0 0 108 -5,-2.3 -1,-0.2 -6,-0.2 -2,-0.1 -0.402 360.0 360.0 70.3 -58.6 5.6 -6.2 -0.3 40 40 A L 0 0 149 -2,-2.5 -7,-0.1 -3,-0.2 -1,-0.0 -0.718 360.0 360.0 -61.0 360.0 8.0 -5.2 2.5