==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 16-FEB-07 2EEM . COMPND 2 MOLECULE: MYTILIN-B; . SOURCE 2 SYNTHETIC: YES; . AUTHOR P.ROCH,Y.YANG,A.AUMELAS . 34 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3176.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 67.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 23.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 26.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S > 0 0 130 0, 0.0 4,-1.8 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 94.2 -6.3 8.2 -2.9 2 2 A a H > + 0 0 22 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.960 360.0 49.9 -63.4 -49.9 -5.8 5.2 -0.6 3 3 A A H > S+ 0 0 35 1,-0.2 4,-2.7 2,-0.2 -1,-0.2 0.896 108.5 53.9 -57.5 -39.4 -3.2 3.5 -2.9 4 4 A S H > S+ 0 0 74 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.923 110.0 46.5 -63.5 -40.7 -1.3 6.8 -3.0 5 5 A R H X S+ 0 0 160 -4,-1.8 4,-1.8 1,-0.2 -2,-0.2 0.924 114.0 48.2 -67.7 -40.5 -1.1 7.0 0.8 6 6 A b H X S+ 0 0 14 -4,-2.6 4,-2.1 1,-0.2 -2,-0.2 0.887 107.3 56.7 -67.1 -36.2 -0.1 3.4 1.0 7 7 A K H X S+ 0 0 103 -4,-2.7 4,-2.0 -5,-0.2 -1,-0.2 0.921 107.9 47.2 -62.4 -41.2 2.6 3.9 -1.7 8 8 A G H X S+ 0 0 26 -4,-1.8 4,-2.8 1,-0.2 5,-0.2 0.895 108.3 56.0 -68.1 -37.3 4.2 6.7 0.4 9 9 A H H X S+ 0 0 113 -4,-1.8 4,-1.5 2,-0.2 -2,-0.2 0.918 108.5 47.2 -62.0 -41.2 4.1 4.4 3.5 10 10 A c H <>S+ 0 0 4 -4,-2.1 5,-1.5 2,-0.2 -1,-0.2 0.936 113.7 47.3 -67.5 -42.5 6.1 1.7 1.7 11 11 A R H ><5S+ 0 0 169 -4,-2.0 3,-1.8 1,-0.2 -2,-0.2 0.921 110.0 53.3 -64.7 -40.0 8.6 4.2 0.5 12 12 A A H 3<5S+ 0 0 88 -4,-2.8 -1,-0.2 1,-0.3 -2,-0.2 0.841 107.4 52.1 -63.9 -29.7 8.9 5.7 4.0 13 13 A R T 3<5S- 0 0 131 -4,-1.5 -1,-0.3 -5,-0.2 -2,-0.2 0.327 123.5-107.3 -88.0 9.8 9.6 2.2 5.3 14 14 A R T < 5 + 0 0 192 -3,-1.8 2,-0.4 1,-0.2 -3,-0.2 0.972 69.7 147.8 65.4 54.0 12.4 1.8 2.7 15 15 A d < - 0 0 16 -5,-1.5 19,-0.3 1,-0.1 -1,-0.2 -0.933 42.1-162.3-122.7 145.3 10.5 -0.7 0.4 16 16 A G S S+ 0 0 68 17,-2.4 2,-0.4 16,-0.4 17,-0.2 0.515 77.6 51.2-101.7 -6.7 10.7 -1.1 -3.4 17 17 A Y E +A 32 0A 139 15,-1.8 15,-3.4 16,-0.1 2,-0.3 -0.988 58.6 162.5-133.5 141.6 7.4 -3.0 -3.8 18 18 A Y E -A 31 0A 78 -2,-0.4 2,-0.4 13,-0.3 13,-0.3 -0.996 21.0-147.5-154.4 148.8 3.8 -2.3 -2.6 19 19 A V E +A 30 0A 67 11,-2.0 11,-2.5 -2,-0.3 2,-0.3 -0.907 16.0 176.9-119.2 147.2 0.3 -3.4 -3.4 20 20 A S E +A 29 0A 33 -2,-0.4 2,-0.3 9,-0.3 9,-0.2 -0.948 5.8 162.8-152.2 128.6 -3.0 -1.4 -3.1 21 21 A V E -A 28 0A 84 7,-1.6 7,-3.2 -2,-0.3 2,-0.5 -0.969 20.0-154.5-148.5 130.4 -6.6 -2.2 -4.0 22 22 A L E +A 27 0A 112 -2,-0.3 2,-0.3 5,-0.2 5,-0.2 -0.903 25.2 161.2-108.4 124.4 -9.9 -0.5 -3.0 23 23 A Y E > -A 26 0A 168 3,-2.5 3,-1.8 -2,-0.5 -2,-0.0 -0.991 63.3 -6.3-145.1 136.5 -13.1 -2.7 -3.0 24 24 A R T 3 S- 0 0 205 -2,-0.3 3,-0.1 1,-0.3 -1,-0.1 0.814 129.9 -54.8 53.5 29.8 -16.5 -2.3 -1.4 25 25 A G T 3 S+ 0 0 76 1,-0.3 2,-0.4 0, 0.0 -1,-0.3 0.721 115.9 119.9 78.1 19.3 -15.2 0.8 0.4 26 26 A R E < -A 23 0A 127 -3,-1.8 -3,-2.5 2,-0.0 2,-0.6 -0.908 57.1-138.6-117.8 144.8 -12.3 -1.2 1.9 27 27 A a E -A 22 0A 52 -2,-0.4 2,-0.8 -5,-0.2 -5,-0.2 -0.885 10.7-167.1-107.2 125.0 -8.6 -0.6 1.3 28 28 A Y E +A 21 0A 107 -7,-3.2 -7,-1.6 -2,-0.6 2,-0.3 -0.843 21.4 167.3-109.3 96.3 -6.2 -3.5 0.7 29 29 A b E +A 20 0A 40 -2,-0.8 2,-0.3 -9,-0.2 -9,-0.3 -0.807 8.8 175.7-111.7 153.8 -2.6 -2.2 1.0 30 30 A K E -A 19 0A 131 -11,-2.5 -11,-2.0 -2,-0.3 2,-0.4 -0.996 14.4-155.7-152.1 152.9 0.7 -4.1 1.3 31 31 A c E +A 18 0A 29 -2,-0.3 -13,-0.3 -13,-0.3 2,-0.2 -0.993 23.4 155.1-135.1 129.8 4.5 -3.3 1.4 32 32 A L E +A 17 0A 91 -15,-3.4 -15,-1.8 -2,-0.4 -16,-0.4 -0.799 44.5 56.8-141.1-176.7 7.3 -5.6 0.4 33 33 A R 0 0 195 -2,-0.2 -17,-2.4 -18,-0.2 -1,-0.2 0.961 360.0 360.0 54.2 54.0 11.0 -5.6 -0.8 34 34 A d 0 0 97 -19,-0.3 -1,-0.1 -3,-0.1 -2,-0.1 0.797 360.0 360.0-103.5 360.0 12.2 -3.5 2.3