==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN TRANSPORT 10-SEP-08 3EFU . COMPND 2 MOLECULE: UBIQUITIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR G.FALINI,S.FERMANI,G.TOSI . 72 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4306.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 51 70.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 6.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 16 22.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 12.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 15.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 36 0, 0.0 16,-3.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 160.1 -4.7 6.9 13.9 2 2 A Q E +A 16 0A 77 14,-0.2 62,-3.2 12,-0.0 63,-0.3 -0.729 360.0 171.2 -96.5 140.1 -3.5 3.3 14.2 3 3 A I E -A 15 0A 0 12,-1.9 12,-2.3 -2,-0.3 2,-0.3 -0.937 24.5-125.8-139.4 161.2 -0.0 2.2 13.4 4 4 A F E -Ab 14 66A 59 61,-3.0 63,-3.1 -2,-0.3 2,-0.5 -0.840 8.4-158.8-112.8 149.9 1.9 -1.1 14.0 5 5 A V E -Ab 13 67A 0 8,-2.3 8,-2.4 -2,-0.3 2,-0.6 -0.926 11.5-157.8-127.7 105.0 5.2 -1.8 15.7 6 6 A K E -Ab 12 68A 88 61,-2.8 63,-2.4 -2,-0.5 6,-0.2 -0.745 12.1-161.5 -87.8 118.5 6.8 -5.0 14.6 7 7 A T E > - b 0 69A 11 4,-2.8 3,-0.9 -2,-0.6 63,-0.1 -0.415 30.4-110.2 -92.4 171.4 9.3 -6.3 17.2 8 8 A L T 3 S+ 0 0 120 61,-0.6 62,-0.1 1,-0.2 -1,-0.1 0.522 110.7 68.4 -80.0 -4.8 12.0 -8.9 16.7 9 9 A T T 3 S- 0 0 124 2,-0.2 -1,-0.2 0, 0.0 3,-0.1 0.599 119.5-101.8 -88.4 -11.0 10.2 -11.5 18.8 10 10 A G S < S+ 0 0 56 -3,-0.9 2,-0.4 1,-0.4 -2,-0.1 0.401 84.8 125.3 105.1 -0.2 7.5 -11.9 16.2 11 11 A K - 0 0 108 2,-0.0 -4,-2.8 -5,-0.0 2,-0.5 -0.742 44.8-159.1 -93.8 137.7 5.0 -9.8 18.1 12 12 A T E -A 6 0A 72 -2,-0.4 2,-0.4 -6,-0.2 -6,-0.2 -0.977 8.9-156.5-118.8 119.4 3.3 -6.8 16.4 13 13 A I E -A 5 0A 5 -8,-2.4 -8,-2.3 -2,-0.5 2,-0.4 -0.762 8.1-138.9 -97.5 142.2 1.9 -4.2 18.8 14 14 A T E -A 4 0A 53 -2,-0.4 2,-0.4 -10,-0.2 -10,-0.2 -0.783 21.7-172.3 -98.4 142.0 -0.9 -1.8 17.7 15 15 A L E -A 3 0A 12 -12,-2.3 -12,-1.9 -2,-0.4 2,-0.7 -0.993 22.7-139.6-137.3 141.4 -0.8 1.8 18.8 16 16 A E E +A 2 0A 116 -2,-0.4 2,-0.3 -14,-0.2 -14,-0.2 -0.899 43.7 153.1 -99.8 117.8 -3.2 4.7 18.6 17 17 A V - 0 0 2 -16,-3.5 -2,-0.0 -2,-0.7 46,-0.0 -0.878 40.0-127.4-139.1 169.4 -1.2 7.9 17.7 18 18 A E > - 0 0 95 -2,-0.3 3,-2.1 1,-0.1 38,-0.3 -0.907 27.4-121.6-116.9 147.2 -1.4 11.3 16.1 19 19 A P T 3 S+ 0 0 49 0, 0.0 38,-2.6 0, 0.0 39,-0.3 0.769 112.9 60.8 -59.1 -23.1 1.0 12.4 13.3 20 20 A S T 3 S+ 0 0 89 36,-0.2 2,-0.1 35,-0.1 -3,-0.0 0.535 81.0 110.0 -81.7 -7.1 1.9 15.4 15.5 21 21 A D S < S- 0 0 35 -3,-2.1 35,-2.2 34,-0.1 36,-0.3 -0.394 70.2-121.1 -70.0 146.6 3.2 13.1 18.3 22 22 A T B > -E 55 0B 44 33,-0.2 4,-2.1 1,-0.1 3,-0.4 -0.514 18.7-117.0 -84.5 156.9 7.0 13.0 18.9 23 23 A I H > S+ 0 0 0 31,-2.3 4,-2.5 28,-0.5 5,-0.2 0.857 116.7 59.1 -61.4 -34.7 9.0 9.8 18.6 24 24 A E H > S+ 0 0 105 28,-1.6 4,-1.4 30,-0.4 -1,-0.2 0.869 105.9 47.7 -63.5 -34.8 9.8 10.2 22.3 25 25 A N H > S+ 0 0 62 -3,-0.4 4,-2.4 27,-0.3 -2,-0.2 0.906 108.4 54.5 -71.9 -39.6 6.1 10.0 23.1 26 26 A V H X S+ 0 0 0 -4,-2.1 4,-2.3 1,-0.2 -2,-0.2 0.936 108.3 48.8 -57.9 -44.7 5.7 7.0 20.8 27 27 A K H X S+ 0 0 11 -4,-2.5 4,-2.4 1,-0.2 -1,-0.2 0.863 109.1 54.4 -62.0 -33.9 8.4 5.2 22.8 28 28 A A H X S+ 0 0 41 -4,-1.4 4,-2.5 2,-0.2 -1,-0.2 0.885 107.4 49.9 -65.2 -40.2 6.6 6.3 25.9 29 29 A K H X S+ 0 0 60 -4,-2.4 4,-2.5 2,-0.2 -2,-0.2 0.901 110.3 50.1 -64.8 -43.5 3.4 4.7 24.6 30 30 A I H X>S+ 0 0 0 -4,-2.3 4,-3.8 2,-0.2 5,-0.6 0.911 111.5 47.6 -62.9 -43.7 5.3 1.5 23.8 31 31 A Q H X5S+ 0 0 81 -4,-2.4 4,-2.2 4,-0.2 -2,-0.2 0.933 112.5 50.3 -63.8 -43.7 6.8 1.4 27.3 32 32 A D H <5S+ 0 0 136 -4,-2.5 -2,-0.2 1,-0.2 -1,-0.2 0.901 121.5 33.6 -59.9 -42.2 3.4 2.0 28.8 33 33 A K H <5S+ 0 0 92 -4,-2.5 -2,-0.2 -5,-0.1 -1,-0.2 0.880 137.4 17.9 -82.9 -42.3 1.8 -0.8 26.8 34 34 A E H <5S- 0 0 69 -4,-3.8 -3,-0.2 -5,-0.2 -2,-0.2 0.479 94.0-123.8-110.9 -6.5 4.6 -3.3 26.5 35 35 A G << + 0 0 44 -4,-2.2 -4,-0.2 -5,-0.6 -3,-0.1 0.599 56.3 149.4 74.8 12.1 6.9 -2.3 29.3 36 36 A I - 0 0 28 -6,-0.6 -1,-0.2 -9,-0.1 -2,-0.1 -0.690 53.4-115.3 -82.2 119.3 10.0 -1.9 27.1 37 37 A P > - 0 0 59 0, 0.0 3,-1.8 0, 0.0 4,-0.5 -0.275 17.0-131.2 -53.8 132.6 12.3 0.8 28.5 38 38 A P G > S+ 0 0 61 0, 0.0 3,-1.6 0, 0.0 -10,-0.1 0.863 104.5 65.8 -54.3 -37.6 12.5 3.8 26.0 39 39 A D G 3 S+ 0 0 131 1,-0.3 -3,-0.0 32,-0.0 -12,-0.0 0.715 102.5 47.6 -59.4 -21.1 16.3 3.7 26.3 40 40 A Q G < S+ 0 0 76 -3,-1.8 32,-3.3 31,-0.1 2,-0.4 0.509 89.8 106.8 -97.9 -5.5 16.4 0.3 24.6 41 41 A Q E < +C 71 0A 0 -3,-1.6 2,-0.5 -4,-0.5 30,-0.2 -0.625 40.2 177.5 -83.3 127.0 14.0 1.2 21.8 42 42 A R E -C 70 0A 95 28,-1.1 28,-2.7 -2,-0.4 2,-0.4 -0.954 15.3-163.8-124.9 105.0 15.4 1.7 18.3 43 43 A L E -C 69 0A 0 -2,-0.5 7,-2.3 7,-0.3 2,-0.4 -0.758 6.2-172.5 -97.4 140.0 12.5 2.5 15.9 44 44 A I E +CD 68 49A 32 24,-2.4 24,-3.3 -2,-0.4 2,-0.3 -0.982 8.6 174.9-131.4 141.1 12.9 2.3 12.2 45 45 A F E > S- D 0 48A 35 3,-2.2 3,-2.1 -2,-0.4 22,-0.1 -0.971 74.8 -7.8-146.5 128.1 10.5 3.3 9.4 46 46 A A T 3 S- 0 0 72 -2,-0.3 3,-0.1 20,-0.3 21,-0.1 0.852 129.8 -55.7 54.1 37.4 11.3 3.1 5.6 47 47 A G T 3 S+ 0 0 73 1,-0.2 2,-0.4 0, 0.0 -1,-0.3 0.562 114.3 118.8 74.0 8.5 14.9 2.3 6.5 48 48 A K E < -D 45 0A 102 -3,-2.1 -3,-2.2 11,-0.1 2,-0.6 -0.911 64.0-131.5-112.2 133.6 15.3 5.4 8.6 49 49 A Q E -D 44 0A 117 -2,-0.4 -5,-0.2 -5,-0.2 2,-0.2 -0.718 32.3-126.0 -81.6 122.8 16.1 5.4 12.3 50 50 A L - 0 0 6 -7,-2.3 2,-0.4 -2,-0.6 -7,-0.3 -0.451 16.6-136.6 -73.9 141.3 13.6 7.7 14.0 51 51 A E > - 0 0 129 -2,-0.2 3,-2.4 4,-0.1 -28,-0.5 -0.848 12.3-129.1-104.1 131.9 14.9 10.6 16.2 52 52 A D T 3 S+ 0 0 73 -2,-0.4 -28,-1.6 1,-0.3 -27,-0.3 0.746 105.1 52.0 -45.1 -37.5 13.3 11.4 19.6 53 53 A G T 3 S+ 0 0 41 -30,-0.1 -1,-0.3 -31,-0.1 2,-0.1 0.509 97.3 80.5 -83.7 -4.6 12.9 15.1 18.9 54 54 A R S < S- 0 0 121 -3,-2.4 -31,-2.3 1,-0.0 -30,-0.4 -0.394 74.6-122.2 -94.8 174.6 11.1 14.7 15.6 55 55 A T B > -E 22 0B 27 -33,-0.3 4,-0.8 -2,-0.1 3,-0.4 -0.748 23.3-112.3-114.2 163.6 7.4 13.9 15.0 56 56 A L T >4>S+ 0 0 0 -35,-2.2 5,-2.0 -38,-0.3 3,-0.9 0.884 119.4 57.0 -60.4 -37.2 5.7 11.0 13.1 57 57 A S G >45S+ 0 0 61 -38,-2.6 3,-1.6 -36,-0.3 -1,-0.2 0.836 94.3 65.4 -63.4 -32.9 4.6 13.6 10.5 58 58 A D G 345S+ 0 0 86 -3,-0.4 -1,-0.3 -39,-0.3 -2,-0.2 0.830 108.1 41.7 -58.1 -31.4 8.2 14.6 9.9 59 59 A Y G <<5S- 0 0 38 -3,-0.9 -1,-0.3 -4,-0.8 -2,-0.2 0.323 114.3-116.3 -97.5 4.7 8.8 11.1 8.5 60 60 A N T < 5 + 0 0 111 -3,-1.6 2,-0.5 1,-0.2 -3,-0.2 0.754 52.9 168.4 67.0 24.7 5.5 11.0 6.6 61 61 A I < - 0 0 3 -5,-2.0 -1,-0.2 -42,-0.1 2,-0.2 -0.594 11.3-180.0 -73.5 121.6 4.3 8.1 8.8 62 62 A Q > - 0 0 115 -2,-0.5 3,-2.0 1,-0.2 -1,-0.0 -0.568 35.2 -49.6-116.5-179.7 0.6 7.6 8.0 63 63 A K T 3 S+ 0 0 126 1,-0.3 -1,-0.2 -2,-0.2 -60,-0.2 -0.114 122.5 14.0 -51.7 143.8 -2.3 5.4 9.2 64 64 A E T 3 S+ 0 0 89 -62,-3.2 -1,-0.3 1,-0.2 -61,-0.2 0.468 90.1 149.1 67.5 3.9 -1.6 1.6 9.1 65 65 A S < - 0 0 22 -3,-2.0 -61,-3.0 -63,-0.3 2,-0.5 -0.264 40.8-136.1 -63.1 156.6 2.2 2.3 8.8 66 66 A T E -b 4 0A 58 -63,-0.2 -20,-0.3 -3,-0.1 2,-0.3 -0.976 16.0-165.4-120.4 123.8 4.5 -0.3 10.3 67 67 A L E -b 5 0A 0 -63,-3.1 -61,-2.8 -2,-0.5 2,-0.5 -0.729 17.7-129.2-102.3 156.3 7.5 0.7 12.4 68 68 A H E -bC 6 44A 82 -24,-3.3 -24,-2.4 -2,-0.3 2,-0.6 -0.920 16.1-157.2-109.8 131.8 10.3 -1.7 13.3 69 69 A L E -bC 7 43A 0 -63,-2.4 -61,-0.6 -2,-0.5 2,-0.5 -0.929 11.1-179.8-113.5 115.2 11.4 -2.0 16.9 70 70 A V E - C 0 42A 31 -28,-2.7 -28,-1.1 -2,-0.6 2,-0.4 -0.955 27.2-127.8-113.5 126.8 14.9 -3.3 17.6 71 71 A L E C 0 41A 89 -2,-0.5 -30,-0.2 -30,-0.2 -31,-0.1 -0.597 360.0 360.0 -78.1 128.5 16.0 -3.5 21.3 72 72 A R 0 0 165 -32,-3.3 -1,-0.0 -2,-0.4 -30,-0.0 -0.563 360.0 360.0 -84.9 360.0 19.3 -1.9 22.0