==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=1-MAR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 30-MAR-12 4EFX . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.NORRMAN,T.N.VINTHER . 98 4 8 2 6 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5433.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 76 77.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 11.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 21 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 32 32.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 19 0, 0.0 2,-0.2 0, 0.0 11,-0.1 0.000 360.0 360.0 360.0 140.9 -13.8 13.6 8.1 2 2 A I > - 0 0 90 47,-0.1 4,-2.0 9,-0.1 5,-0.2 0.419 360.0-148.1 -74.6 154.4 -12.6 14.8 10.4 3 3 A V H > S+ 0 0 4 46,-0.3 4,-1.1 1,-0.2 5,-0.1 0.836 105.7 50.1 -55.0 -37.0 -9.2 13.2 9.6 4 4 A E H >>S+ 0 0 74 2,-0.2 4,-3.1 3,-0.1 5,-0.6 0.897 106.1 57.9 -62.3 -43.1 -8.7 13.1 13.4 5 5 A Q H >5S+ 0 0 59 1,-0.2 4,-1.1 2,-0.2 22,-0.3 0.845 106.8 45.8 -59.6 -45.2 -12.2 11.5 13.7 6 6 A a H <5S+ 0 0 0 -4,-2.0 22,-2.7 2,-0.1 21,-0.5 0.774 120.3 41.1 -60.8 -39.6 -11.2 8.5 11.4 7 7 A b H <5S+ 0 0 39 -4,-1.1 -2,-0.2 20,-0.3 -3,-0.1 0.931 124.2 31.9 -79.8 -57.5 -7.9 8.0 13.2 8 8 A T H <5S+ 0 0 120 -4,-3.1 -3,-0.2 -5,-0.1 -2,-0.1 0.915 138.8 5.9 -67.7 -41.1 -8.8 8.5 16.9 9 9 A S S <> -A 24 0A 25 -2,-0.3 4,-1.0 12,-0.2 3,-0.6 -0.552 26.5-115.3 -83.3 161.0 -17.5 6.0 7.1 13 13 A L H 3> S+ 0 0 1 10,-0.8 4,-0.7 1,-0.2 -1,-0.1 0.723 116.0 65.6 -63.6 -24.3 -16.3 6.4 3.5 14 14 A Y H >4 S+ 0 0 101 1,-0.2 3,-1.0 2,-0.2 -1,-0.2 0.897 96.0 53.2 -69.9 -41.4 -19.2 8.7 3.1 15 15 A Q H X4 S+ 0 0 62 -3,-0.6 3,-1.1 1,-0.2 4,-0.4 0.780 102.8 60.0 -61.0 -28.9 -17.7 11.2 5.5 16 16 A L H >< S+ 0 0 0 -4,-1.0 3,-1.3 1,-0.2 -1,-0.2 0.813 87.9 72.8 -68.0 -23.1 -14.6 11.1 3.4 17 17 A E G X< S+ 0 0 70 -3,-1.0 3,-0.7 -4,-0.7 -1,-0.2 0.637 84.7 71.1 -67.7 -8.2 -16.6 12.3 0.3 18 18 A N G < S+ 0 0 116 -3,-1.1 -1,-0.3 1,-0.2 -2,-0.2 0.860 91.8 53.1 -78.6 -35.8 -16.6 15.6 2.1 19 19 A Y G < S+ 0 0 39 -3,-1.3 28,-2.1 -4,-0.4 -1,-0.2 0.326 88.6 109.5 -80.2 9.3 -12.8 16.2 1.4 20 20 A d B < B 46 0B 12 -3,-0.7 26,-0.3 26,-0.2 25,-0.1 -0.264 360.0 360.0 -80.2 169.3 -13.1 15.7 -2.4 21 21 A N 0 0 124 24,-1.7 -1,-0.1 20,-0.2 -2,-0.1 -0.817 360.0 360.0 -92.5 360.0 -12.8 18.3 -5.1 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 26 0, 0.0 -10,-0.8 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 84.7 -18.7 1.8 5.3 24 2 B V E +A 12 0A 104 -12,-0.2 2,-0.4 67,-0.2 -12,-0.2 -0.491 360.0 177.2 -88.0 128.3 -17.2 2.1 8.8 25 3 B N E -A 11 0A 14 -14,-2.0 -14,-2.3 -2,-0.3 2,-0.4 -0.993 12.2-154.6-133.5 129.2 -13.5 2.2 9.3 26 4 B c E +A 10 0A 71 -2,-0.4 -16,-0.3 -16,-0.3 3,-0.1 -0.861 69.2 6.1-118.9 137.8 -11.7 2.6 12.7 27 5 B H S S+ 0 0 147 -18,-2.9 2,-0.7 -21,-0.5 -20,-0.3 0.877 77.3 170.5 63.9 33.6 -8.3 3.9 13.7 28 6 B L + 0 0 14 -22,-2.7 2,-0.3 -19,-0.4 -1,-0.2 -0.785 16.6 163.3 -84.5 113.5 -7.7 4.9 10.0 29 7 B b >> - 0 0 30 -2,-0.7 3,-1.1 -3,-0.1 4,-0.7 -0.835 34.7 -24.0-144.3 152.1 -4.6 7.0 10.2 30 8 B G H >> S+ 0 0 40 -2,-0.3 4,-1.4 1,-0.2 3,-0.9 -0.074 124.6 6.5 43.5-122.6 -1.7 8.5 8.3 31 9 B S H 3> S+ 0 0 91 1,-0.3 4,-1.8 2,-0.2 -1,-0.2 0.817 131.5 55.3 -65.7 -37.9 -0.8 6.7 5.0 32 10 B H H <> S+ 0 0 121 -3,-1.1 4,-1.3 2,-0.2 -1,-0.3 0.769 106.9 50.7 -57.5 -34.3 -3.9 4.4 5.2 33 11 B L H < S+ 0 0 0 -4,-2.1 3,-0.7 1,-0.2 -2,-0.2 0.958 117.1 47.8 -66.4 -44.2 -10.1 5.7 -3.5 40 18 B V H 3< S+ 0 0 3 -4,-2.7 -1,-0.2 1,-0.2 -2,-0.2 0.907 111.9 49.9 -60.3 -45.2 -13.3 7.5 -2.4 41 19 B d H >X S- 0 0 0 -4,-2.6 3,-2.9 1,-0.2 4,-0.5 0.530 80.6-173.2 -84.4 -6.6 -12.5 10.7 -4.4 42 20 B G T << S- 0 0 8 -4,-0.8 3,-0.3 -3,-0.7 -1,-0.2 -0.263 72.2 -17.6 60.0-127.6 -11.9 9.0 -7.7 43 21 B E T 34 S+ 0 0 156 32,-0.5 -1,-0.3 1,-0.2 -2,-0.1 0.163 122.5 83.4-103.6 21.7 -10.6 11.7 -10.1 44 22 B R T <4 S- 0 0 27 -3,-2.9 -2,-0.2 1,-0.1 -1,-0.2 0.805 83.2-156.3 -69.9 -37.1 -11.9 14.6 -8.0 45 23 B G < - 0 0 21 -4,-0.5 -24,-1.7 -3,-0.3 2,-0.3 -0.319 12.9-130.5 72.9-173.1 -8.7 14.3 -6.0 46 24 B F B -B 20 0B 60 -26,-0.3 2,-0.5 -2,-0.1 -26,-0.2 -0.896 4.5-104.0-159.9 176.1 -8.9 15.6 -2.5 47 25 B F - 0 0 96 -28,-2.1 2,-0.7 -2,-0.3 -2,-0.0 -0.973 19.8-156.0-118.8 132.8 -7.6 17.7 0.3 48 26 B Y + 0 0 94 -2,-0.5 -14,-0.0 -11,-0.0 -2,-0.0 -0.924 22.5 172.2-106.8 108.1 -5.8 16.2 3.2 49 27 B T 0 0 86 -2,-0.7 -46,-0.3 1,-0.2 -47,-0.1 -0.722 360.0 360.0-127.3 80.4 -6.2 18.7 6.1 50 28 B P 0 0 107 0, 0.0 -1,-0.2 0, 0.0 -46,-0.1 0.959 360.0 360.0 -77.1 360.0 -5.0 17.6 9.5 51 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 52 1 C G >> 0 0 69 0, 0.0 4,-2.0 0, 0.0 3,-0.7 0.000 360.0 360.0 360.0-171.8 -19.9 -7.6 -12.9 53 2 C I H 3> + 0 0 24 1,-0.3 4,-2.9 2,-0.2 5,-0.2 0.872 360.0 54.0 -49.2 -63.0 -18.7 -4.8 -10.6 54 3 C V H 3> S+ 0 0 3 1,-0.2 4,-0.9 2,-0.2 -1,-0.3 0.871 115.3 44.8 -40.5 -46.1 -15.4 -6.1 -9.3 55 4 C E H X> S+ 0 0 79 -3,-0.7 4,-2.9 1,-0.2 3,-0.6 0.913 111.2 50.1 -65.4 -45.1 -14.3 -6.7 -13.0 56 5 C Q H 3X S+ 0 0 65 -4,-2.0 4,-2.1 1,-0.2 22,-0.4 0.836 96.0 71.4 -70.1 -28.2 -15.5 -3.4 -14.4 57 6 C e H 3< S+ 0 0 0 -4,-2.9 22,-2.3 -5,-0.2 21,-0.6 0.928 115.6 25.4 -46.8 -44.8 -13.6 -1.6 -11.6 58 7 C f H << S+ 0 0 44 -4,-0.9 -2,-0.2 -3,-0.6 -1,-0.2 0.893 127.8 42.0 -85.9 -47.3 -10.5 -2.7 -13.5 59 8 C T H < S- 0 0 128 -4,-2.9 -3,-0.2 20,-0.1 -2,-0.2 0.806 137.5 -13.5 -75.5 -30.0 -11.7 -3.1 -17.2 60 9 C S S < S- 0 0 70 -4,-2.1 18,-1.5 -5,-0.3 2,-0.3 0.057 100.7 -59.7-134.3-115.4 -13.8 0.0 -17.1 61 10 C g E +C 77 0C 47 16,-0.3 2,-0.3 17,-0.1 16,-0.3 -0.963 45.0 178.3-140.0 157.6 -15.0 2.2 -14.1 62 11 C e E -C 76 0C 5 14,-2.1 14,-2.8 -2,-0.3 2,-0.5 -0.938 34.6-103.4-145.6 167.3 -17.1 1.4 -11.1 63 12 C S > - 0 0 37 -2,-0.3 3,-1.2 12,-0.2 4,-0.4 -0.903 26.4-137.6 -94.2 129.5 -18.5 3.0 -8.0 64 13 C L G > S+ 0 0 3 -2,-0.5 3,-1.4 10,-0.5 4,-0.2 0.835 103.3 60.6 -41.7 -44.0 -16.5 2.0 -4.8 65 14 C Y G > S+ 0 0 36 1,-0.3 3,-1.6 2,-0.2 -1,-0.2 0.808 92.3 64.8 -67.9 -28.7 -19.8 1.6 -2.9 66 15 C Q G X S+ 0 0 76 -3,-1.2 3,-1.4 1,-0.3 -1,-0.3 0.569 81.9 79.5 -68.0 -16.4 -21.1 -1.1 -5.4 67 16 C L G X + 0 0 0 -3,-1.4 3,-1.9 -4,-0.4 -1,-0.3 0.579 69.2 85.2 -55.9 -15.0 -18.2 -3.3 -4.1 68 17 C E G X S+ 0 0 91 -3,-1.6 3,-1.3 1,-0.3 -1,-0.2 0.745 70.9 78.1 -66.0 -13.0 -20.5 -3.9 -1.2 69 18 C N G < S+ 0 0 119 -3,-1.4 -1,-0.3 1,-0.2 -2,-0.1 0.714 94.0 48.0 -60.3 -19.9 -21.9 -6.6 -3.5 70 19 C Y G < S+ 0 0 57 -3,-1.9 28,-1.5 -4,-0.0 2,-0.3 0.232 81.7 112.5-111.5 11.9 -18.9 -8.8 -2.5 71 20 C h B < D 97 0D 21 -3,-1.3 26,-0.3 26,-0.2 25,-0.1 -0.688 360.0 360.0 -84.8 141.1 -18.9 -8.5 1.3 72 21 C N 0 0 120 24,-1.4 24,-0.1 -2,-0.3 -1,-0.1 0.075 360.0 360.0 -71.6 360.0 -19.8 -11.7 3.3 73 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 74 1 D F 0 0 94 0, 0.0 -10,-0.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 156.9 -17.2 9.4 -7.6 75 2 D V - 0 0 78 -34,-0.2 2,-0.5 -12,-0.1 -32,-0.5 -0.809 360.0-155.4-111.5 140.4 -16.0 6.9 -10.1 76 3 D N E -C 62 0C 10 -14,-2.8 -14,-2.1 -2,-0.3 2,-0.4 -0.968 17.4-178.8-116.1 112.6 -12.9 4.5 -10.0 77 4 D g E +C 61 0C 69 -2,-0.5 -16,-0.3 -16,-0.3 -19,-0.2 -0.880 68.6 12.1-111.2 138.0 -11.6 3.5 -13.4 78 5 D H S S+ 0 0 154 -18,-1.5 2,-0.9 -21,-0.6 -20,-0.3 0.895 76.1 161.5 63.7 36.7 -8.7 1.1 -13.8 79 6 D L + 0 0 11 -22,-2.3 -1,-0.3 -3,-0.3 2,-0.2 -0.878 25.1 167.6 -89.8 102.4 -8.9 0.2 -10.1 80 7 D f >> - 0 0 28 -2,-0.9 3,-1.8 -3,-0.1 4,-0.9 -0.728 31.8 -21.9-129.0 162.2 -6.9 -3.0 -10.5 81 8 D G H >> S+ 0 0 37 1,-0.3 4,-1.7 -2,-0.2 3,-0.5 0.067 126.4 6.9 40.2-121.2 -5.1 -5.8 -8.5 82 9 D S H 3> S+ 0 0 89 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.767 128.8 59.1 -62.9 -25.5 -4.0 -4.8 -5.0 83 10 D H H <> S+ 0 0 94 -3,-1.8 4,-2.1 2,-0.2 -1,-0.2 0.915 106.1 48.1 -72.5 -33.2 -5.8 -1.4 -5.2 84 11 D L H S+ 0 0 0 -4,-2.4 4,-3.2 1,-0.2 5,-0.6 0.873 110.1 51.3 -57.2 -45.8 -12.9 -4.2 -0.9 89 16 D Y H X5S+ 0 0 124 -4,-2.0 4,-2.1 3,-0.2 -2,-0.2 0.932 110.0 48.9 -57.2 -47.5 -11.3 -4.1 2.6 90 17 D L H <5S+ 0 0 2 -4,-2.8 -2,-0.2 1,-0.2 -1,-0.2 0.859 118.8 39.4 -64.3 -34.7 -12.4 -0.5 3.2 91 18 D V H <5S+ 0 0 1 -4,-1.7 -2,-0.2 -5,-0.2 -1,-0.2 0.918 131.7 23.5 -81.9 -45.2 -16.0 -1.2 2.1 92 19 D h H ><5S+ 0 0 5 -4,-3.2 3,-1.9 -5,-0.2 -3,-0.2 0.859 79.3 150.3 -89.2 -42.4 -16.4 -4.7 3.7 93 20 D G G ><