==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 08-OCT-91 1EGO . COMPND 2 MOLECULE: GLUTAREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR T.-H.XIA,J.H.BUSHWELLER,P.SODANO,M.BILLETER,O.BJORNBERG, . 85 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4979.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 62 72.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 11.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 8.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 29 34.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 73 0, 0.0 31,-2.8 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 170.0 -8.6 -3.5 6.5 2 2 A Q E -a 32 0A 82 29,-0.2 63,-2.7 2,-0.0 2,-0.3 -0.912 360.0-163.6-123.6 147.0 -5.8 -5.1 4.4 3 3 A T E -aB 33 64A 0 29,-2.2 31,-2.1 -2,-0.3 2,-0.4 -0.924 3.3-159.3-128.6 154.5 -3.3 -3.5 2.1 4 4 A V E -aB 34 63A 21 59,-2.9 59,-2.3 -2,-0.3 2,-0.6 -0.999 3.3-159.3-134.2 128.7 -1.1 -4.9 -0.7 5 5 A I E -aB 35 62A 0 29,-2.2 31,-2.3 -2,-0.4 2,-1.1 -0.951 1.0-165.7-111.4 120.3 2.1 -3.3 -2.1 6 6 A F E +aB 36 61A 16 55,-2.1 55,-1.1 -2,-0.6 2,-0.2 -0.648 54.0 93.7-101.9 74.3 3.2 -4.5 -5.5 7 7 A G - 0 0 0 29,-1.9 2,-0.3 -2,-1.1 31,-0.2 -0.816 69.1-104.4-147.0-173.2 6.7 -3.0 -5.6 8 8 A R > - 0 0 101 -2,-0.2 2,-2.6 3,-0.2 3,-1.4 -0.920 37.3-100.5-123.1 154.7 10.3 -3.9 -4.8 9 9 A S T 3 S+ 0 0 97 -2,-0.3 28,-0.0 1,-0.3 0, 0.0 -0.365 115.1 27.8 -72.2 77.0 12.6 -2.9 -1.9 10 10 A G T 3 S+ 0 0 62 -2,-2.6 -1,-0.3 2,-0.1 3,-0.1 0.502 81.7 106.9 144.4 21.5 14.5 -0.1 -3.7 11 11 A a S X S- 0 0 29 -3,-1.4 3,-3.1 1,-0.3 -3,-0.2 -0.712 77.4-128.3-122.0 80.6 12.2 1.3 -6.5 12 12 A P T >> S+ 0 0 105 0, 0.0 4,-2.3 0, 0.0 3,-0.8 0.253 102.4 48.4 -18.7 -69.4 11.6 4.6 -4.7 13 13 A Y H 3> S+ 0 0 119 1,-0.3 4,-3.4 2,-0.2 5,-0.3 0.828 108.7 59.3 -34.2 -45.0 7.7 4.7 -4.8 14 14 A a H <> S+ 0 0 0 -3,-3.1 4,-2.7 2,-0.2 -1,-0.3 0.961 107.5 42.9 -52.4 -55.9 7.8 1.1 -3.6 15 15 A V H <> S+ 0 0 54 -3,-0.8 4,-3.5 -7,-0.3 -1,-0.2 0.934 113.9 53.6 -58.3 -45.8 9.6 2.0 -0.4 16 16 A R H X S+ 0 0 104 -4,-2.3 4,-3.1 2,-0.2 -2,-0.2 0.927 107.9 47.9 -55.8 -51.8 7.4 5.0 -0.0 17 17 A A H X S+ 0 0 0 -4,-3.4 4,-3.4 -5,-0.2 5,-0.3 0.961 114.0 49.5 -53.2 -50.1 4.2 3.0 -0.2 18 18 A K H X S+ 0 0 44 -4,-2.7 4,-3.3 -5,-0.3 5,-0.4 0.954 110.1 49.8 -53.9 -55.1 5.7 0.7 2.3 19 19 A D H X S+ 0 0 49 -4,-3.5 4,-2.9 1,-0.2 -2,-0.2 0.957 115.0 44.4 -47.8 -56.9 6.7 3.6 4.6 20 20 A L H X S+ 0 0 29 -4,-3.1 4,-2.4 2,-0.2 -2,-0.2 0.955 117.4 42.9 -55.4 -57.1 3.2 4.9 4.4 21 21 A A H X S+ 0 0 0 -4,-3.4 4,-2.0 1,-0.2 -2,-0.2 0.972 113.2 52.2 -55.6 -54.4 1.4 1.6 4.9 22 22 A E H X S+ 0 0 80 -4,-3.3 4,-0.6 -5,-0.3 -1,-0.2 0.915 109.8 52.0 -47.6 -47.6 3.8 0.5 7.6 23 23 A K H >< S+ 0 0 70 -4,-2.9 3,-2.8 -5,-0.4 -2,-0.2 0.971 103.5 54.6 -53.3 -64.2 3.0 3.8 9.3 24 24 A L H >X>S+ 0 0 0 -4,-2.4 3,-3.2 1,-0.3 4,-3.0 0.813 92.9 73.5 -38.5 -47.0 -0.8 3.4 9.2 25 25 A S H 3X5S+ 0 0 24 -4,-2.0 4,-0.7 1,-0.3 -1,-0.3 0.814 99.5 45.6 -39.1 -36.0 -0.5 0.1 11.0 26 26 A N H <<5S+ 0 0 136 -3,-2.8 -1,-0.3 -4,-0.6 -2,-0.2 0.243 121.8 35.4 -97.7 12.6 0.3 2.0 14.2 27 27 A E H <45S+ 0 0 93 -3,-3.2 -2,-0.2 -4,-0.2 -1,-0.1 0.520 122.4 38.0-131.9 -30.8 -2.5 4.6 13.9 28 28 A R H <5S- 0 0 97 -4,-3.0 2,-3.2 -5,-0.2 -3,-0.2 0.683 74.3-165.4 -99.1 -24.2 -5.4 2.7 12.3 29 29 A D S <> - 0 0 30 -2,-0.4 3,-2.7 -31,-0.2 4,-2.6 -0.906 5.7-151.5-110.4 111.4 7.5 -8.0 -5.2 38 38 A I H 3>>S+ 0 0 14 -2,-0.6 5,-1.9 1,-0.3 4,-0.8 0.787 98.5 46.2 -48.7 -32.2 6.6 -7.6 -8.9 39 39 A R H 345S+ 0 0 147 3,-0.2 -1,-0.3 2,-0.1 -31,-0.0 0.161 116.0 44.8-101.5 19.3 9.9 -9.4 -9.9 40 40 A A H <45S+ 0 0 79 -3,-2.7 -2,-0.2 0, 0.0 -1,-0.1 0.616 115.1 41.8-122.7 -43.7 9.5 -12.3 -7.5 41 41 A E H <5S- 0 0 124 -4,-2.6 -3,-0.2 2,-0.0 -2,-0.1 0.899 114.2-106.9 -74.5 -45.3 5.8 -13.2 -7.9 42 42 A G T <5 + 0 0 51 -4,-0.8 2,-0.3 -5,-0.4 -3,-0.2 0.756 52.5 162.9 116.6 63.5 5.8 -12.9 -11.7 43 43 A I < + 0 0 13 -5,-1.9 -1,-0.1 1,-0.1 3,-0.0 -0.859 6.2 167.9-111.6 145.6 3.9 -9.8 -13.0 44 44 A T - 0 0 78 -2,-0.3 -1,-0.1 -5,-0.0 -2,-0.0 0.504 56.6 -76.8-116.9 -97.6 4.2 -8.4 -16.6 45 45 A K S > S+ 0 0 113 3,-0.1 4,-3.0 9,-0.0 5,-0.2 0.416 122.3 58.5-137.6 -50.8 1.8 -5.7 -17.9 46 46 A E H > S+ 0 0 95 2,-0.2 4,-2.8 1,-0.2 5,-0.2 0.917 104.5 55.4 -51.3 -50.2 -1.3 -7.7 -18.8 47 47 A D H > S+ 0 0 65 2,-0.2 4,-3.2 1,-0.2 3,-0.4 0.970 110.0 44.4 -46.4 -64.3 -1.6 -8.8 -15.1 48 48 A L H >>S+ 0 0 8 1,-0.3 4,-3.6 2,-0.2 5,-1.9 0.932 112.3 51.8 -49.9 -50.9 -1.5 -5.3 -13.8 49 49 A Q H <5S+ 0 0 99 -4,-3.0 -1,-0.3 3,-0.2 -2,-0.2 0.898 115.5 43.2 -56.2 -36.5 -4.0 -4.1 -16.5 50 50 A Q H <5S+ 0 0 170 -4,-2.8 -2,-0.2 -3,-0.4 -1,-0.2 0.875 124.1 34.3 -75.6 -39.4 -6.3 -7.0 -15.4 51 51 A K H <5S+ 0 0 62 -4,-3.2 -2,-0.2 -5,-0.2 -3,-0.2 0.736 141.0 11.9 -87.4 -28.8 -5.8 -6.5 -11.6 52 52 A A T <5S- 0 0 17 -4,-3.6 -3,-0.2 -5,-0.4 -2,-0.1 0.625 90.1-125.1-118.2 -35.7 -5.4 -2.7 -11.5 53 53 A G < - 0 0 44 -5,-1.9 -4,-0.2 -6,-0.2 -3,-0.1 -0.322 41.8-137.5 112.9 -44.6 -6.5 -1.5 -14.9 54 54 A K - 0 0 33 -6,-0.2 -1,-0.1 2,-0.0 2,-0.1 0.938 14.1-146.4 53.2 102.8 -3.2 0.4 -15.4 55 55 A P - 0 0 88 0, 0.0 2,-2.0 0, 0.0 -2,-0.0 -0.145 61.3 -71.7 -51.1 179.5 -2.9 3.8 -16.8 56 56 A V S S+ 0 0 157 -2,-0.1 2,-0.2 0, 0.0 -2,-0.0 -0.274 97.1 124.7 -88.0 59.3 0.4 3.9 -18.7 57 57 A E - 0 0 47 -2,-2.0 4,-0.1 1,-0.2 0, 0.0 -0.463 49.3-146.7-103.5 178.8 2.5 3.9 -15.6 58 58 A T + 0 0 109 -2,-0.2 -1,-0.2 1,-0.2 -4,-0.0 0.445 49.3 17.1-116.4-106.3 5.3 1.5 -14.6 59 59 A V S S+ 0 0 61 2,-0.0 -46,-0.2 -51,-0.0 -1,-0.2 -0.965 91.8 18.3-135.3 154.6 6.1 0.3 -11.1 60 60 A P + 0 0 3 0, 0.0 2,-0.3 0, 0.0 -53,-0.2 0.580 56.6 175.5 -96.7-164.9 5.1 0.0 -8.4 61 61 A Q E -B 6 0A 2 -55,-1.1 -55,-2.1 -2,-0.1 2,-0.3 -0.956 20.3-126.6-147.8 163.7 1.4 0.3 -7.6 62 62 A I E -BC 5 70A 0 8,-1.4 7,-1.6 -2,-0.3 8,-1.0 -0.890 12.9-168.0-121.3 151.2 -0.9 -0.0 -4.5 63 63 A F E -BC 4 68A 0 -59,-2.3 -59,-2.9 -2,-0.3 2,-0.4 -0.999 2.6-167.7-133.3 130.9 -3.9 -2.1 -3.7 64 64 A V E > S-BC 3 67A 0 3,-1.8 3,-2.5 -2,-0.4 -61,-0.2 -0.990 79.5 -13.0-121.6 129.8 -6.2 -1.6 -0.7 65 65 A D T 3 S- 0 0 80 -63,-2.7 -62,-0.1 -2,-0.4 -1,-0.1 0.799 124.5 -67.1 51.5 25.3 -8.8 -4.3 0.2 66 66 A Q T 3 S+ 0 0 120 1,-0.3 -1,-0.3 -64,-0.2 2,-0.2 0.263 110.6 118.2 79.5 -6.4 -8.1 -5.6 -3.3 67 67 A Q E < S-C 64 0A 104 -3,-2.5 -3,-1.8 1,-0.1 -1,-0.3 -0.544 72.7-105.3 -83.8 155.0 -9.5 -2.5 -5.1 68 68 A H E +C 63 0A 54 -5,-0.2 -5,-0.2 -2,-0.2 3,-0.1 -0.573 35.8 176.0 -83.2 147.5 -7.0 -0.6 -7.2 69 69 A I E - 0 0 26 -7,-1.6 2,-0.4 1,-0.3 -1,-0.1 0.662 44.2-110.8-116.6 -35.7 -5.8 2.8 -5.9 70 70 A G E -C 62 0A 11 -8,-1.0 -8,-1.4 1,-0.2 -1,-0.3 -1.000 50.0 -46.3 141.2-139.8 -3.3 3.8 -8.6 71 71 A G S S- 0 0 8 -2,-0.4 -1,-0.2 -10,-0.2 -2,-0.0 0.890 90.6 -68.5 -99.2 -65.8 0.5 4.1 -8.5 72 72 A Y S > S+ 0 0 28 -3,-0.1 4,-3.3 -11,-0.1 5,-0.2 0.328 121.2 64.6-157.8 -53.8 1.6 6.0 -5.4 73 73 A T H > S+ 0 0 90 1,-0.2 4,-3.1 2,-0.2 5,-0.2 0.940 107.8 52.5 -46.7 -47.6 0.6 9.7 -5.3 74 74 A D H > S+ 0 0 37 2,-0.2 4,-3.2 1,-0.2 5,-0.4 0.967 108.3 47.2 -53.4 -59.4 -2.9 8.3 -5.3 75 75 A F H > S+ 0 0 0 1,-0.2 4,-3.3 2,-0.2 5,-0.4 0.932 112.1 52.4 -51.8 -47.6 -2.3 6.0 -2.3 76 76 A A H X S+ 0 0 30 -4,-3.3 4,-3.0 2,-0.2 -2,-0.2 0.978 119.9 32.8 -51.8 -59.4 -0.6 8.9 -0.5 77 77 A A H X S+ 0 0 49 -4,-3.1 4,-3.0 2,-0.2 5,-0.2 0.993 119.3 51.2 -60.8 -63.7 -3.6 11.2 -1.0 78 78 A W H X S+ 0 0 48 -4,-3.2 4,-3.1 1,-0.2 5,-0.4 0.869 114.7 45.7 -40.5 -48.9 -6.3 8.5 -0.9 79 79 A V H X>S+ 0 0 1 -4,-3.3 4,-3.1 -5,-0.4 5,-1.6 0.983 110.0 52.4 -60.5 -59.2 -4.7 7.3 2.4 80 80 A K H X5S+ 0 0 98 -4,-3.0 4,-0.6 -5,-0.4 -2,-0.2 0.914 118.6 39.0 -41.3 -49.7 -4.4 10.8 3.8 81 81 A E H X5S+ 0 0 122 -4,-3.0 4,-0.6 3,-0.2 -2,-0.2 0.963 125.3 30.1 -71.0 -55.7 -8.1 11.3 3.0 82 82 A N H <5S+ 0 0 99 -4,-3.1 -3,-0.2 -5,-0.2 -2,-0.2 0.726 133.0 28.4 -83.5 -20.1 -9.8 8.0 3.9 83 83 A L H <5S+ 0 0 22 -4,-3.1 -3,-0.2 -5,-0.4 -2,-0.1 0.822 133.9 21.7-109.7 -37.3 -7.5 6.9 6.7 84 84 A D H << 0 0 37 -5,-1.6 -3,-0.2 -4,-0.6 -4,-0.1 0.171 360.0 360.0-119.0 20.3 -6.0 10.0 8.3 85 85 A A < 0 0 100 -4,-0.6 -1,-0.3 -6,-0.3 -2,-0.1 -0.359 360.0 360.0 50.5 360.0 -8.6 12.7 7.4