==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CELL CYCLE 23-FEB-00 1EI0 . COMPND 2 MOLECULE: P8MTCP1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR P.BARTHE,S.ROCHETTE,C.VITA,C.ROUMESTAND . 38 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3151.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 31 81.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 15.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 60.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 120 0, 0.0 4,-0.1 0, 0.0 37,-0.0 0.000 360.0 360.0 360.0 176.6 5.9 13.5 -0.3 2 2 A P - 0 0 75 0, 0.0 4,-0.1 0, 0.0 36,-0.1 0.987 360.0 -34.9 -50.5 -80.8 2.3 12.4 -0.9 3 3 A a S > S+ 0 0 13 2,-0.1 4,-2.7 35,-0.1 5,-0.2 0.007 83.3 129.5-147.1 25.9 2.1 8.6 -0.3 4 4 A Q H > S+ 0 0 137 1,-0.2 4,-2.9 2,-0.2 5,-0.2 0.874 81.4 55.6 -60.3 -34.0 5.4 6.8 -1.4 5 5 A K H > S+ 0 0 140 2,-0.2 4,-3.2 1,-0.2 -1,-0.2 0.947 109.0 46.2 -57.6 -51.4 5.5 5.1 2.1 6 6 A Q H > S+ 0 0 27 2,-0.2 4,-2.8 1,-0.2 -2,-0.2 0.922 112.5 50.5 -58.8 -45.3 2.0 3.7 1.4 7 7 A A H X S+ 0 0 46 -4,-2.7 4,-2.4 2,-0.2 -2,-0.2 0.930 114.4 44.2 -58.4 -46.6 3.0 2.6 -2.1 8 8 A A H X S+ 0 0 56 -4,-2.9 4,-3.0 2,-0.2 -2,-0.2 0.918 115.2 47.7 -61.9 -46.4 6.1 0.9 -0.6 9 9 A E H X S+ 0 0 108 -4,-3.2 4,-3.0 2,-0.2 -2,-0.2 0.815 109.5 53.9 -68.4 -30.1 4.1 -0.6 2.3 10 10 A I H X S+ 0 0 23 -4,-2.8 4,-3.1 -5,-0.2 -2,-0.2 0.947 112.0 44.7 -64.8 -49.0 1.4 -1.8 -0.3 11 11 A Q H X S+ 0 0 118 -4,-2.4 4,-3.3 2,-0.2 -2,-0.2 0.947 115.6 47.9 -55.0 -51.7 4.3 -3.5 -2.2 12 12 A K H X S+ 0 0 157 -4,-3.0 4,-2.5 1,-0.2 -2,-0.2 0.913 113.7 47.0 -56.3 -49.3 5.6 -4.9 1.1 13 13 A b H X S+ 0 0 24 -4,-3.0 4,-0.8 2,-0.2 -1,-0.2 0.934 114.3 46.4 -58.8 -51.9 2.2 -6.1 2.2 14 14 A L H ><>S+ 0 0 25 -4,-3.1 5,-3.1 1,-0.2 3,-1.3 0.935 111.5 52.0 -60.0 -46.9 1.5 -7.7 -1.2 15 15 A Q H ><5S+ 0 0 124 -4,-3.3 3,-1.1 1,-0.3 -1,-0.2 0.897 111.5 46.8 -52.0 -47.5 5.0 -9.3 -1.2 16 16 A A H 3<5S+ 0 0 82 -4,-2.5 -1,-0.3 1,-0.2 -2,-0.2 0.583 117.6 44.2 -70.5 -13.1 4.2 -10.7 2.3 17 17 A N T X<5S- 0 0 47 -3,-1.3 3,-2.2 -4,-0.8 -1,-0.2 -0.041 117.6-106.1-123.9 23.0 0.7 -11.9 1.0 18 18 A S T < 5S- 0 0 100 -3,-1.1 -3,-0.2 1,-0.3 3,-0.1 0.796 76.1 -58.5 56.0 35.7 1.9 -13.4 -2.4 19 19 A Y T 3 > S+ 0 0 98 -2,-1.8 3,-2.1 1,-0.3 4,-0.9 0.781 77.4 72.6 -46.4 -37.7 -4.3 -7.6 -3.0 22 22 A S G 34 S+ 0 0 105 1,-0.3 -1,-0.3 2,-0.2 4,-0.3 0.751 94.9 51.9 -54.5 -28.8 -7.3 -8.5 -0.8 23 23 A K G <4 S+ 0 0 136 -3,-2.4 -1,-0.3 1,-0.2 -2,-0.2 0.603 117.4 39.2 -82.8 -11.0 -5.0 -8.8 2.3 24 24 A b T X> S+ 0 0 0 -3,-2.1 4,-2.0 -4,-0.4 3,-1.2 0.309 81.5 102.2-124.5 1.0 -3.6 -5.3 1.5 25 25 A Q H 3X S+ 0 0 58 -4,-0.9 4,-2.7 1,-0.3 5,-0.2 0.864 79.0 60.3 -57.6 -35.2 -6.8 -3.5 0.5 26 26 A A H 3> S+ 0 0 80 -4,-0.3 4,-1.2 2,-0.2 -1,-0.3 0.810 106.9 46.1 -59.8 -29.5 -6.8 -1.9 3.9 27 27 A V H <> S+ 0 0 37 -3,-1.2 4,-2.5 2,-0.2 -2,-0.2 0.862 110.2 52.6 -82.7 -36.0 -3.4 -0.3 3.0 28 28 A I H X S+ 0 0 26 -4,-2.0 4,-3.0 2,-0.2 -2,-0.2 0.861 105.5 55.0 -66.1 -36.6 -4.8 0.7 -0.5 29 29 A Q H X S+ 0 0 102 -4,-2.7 4,-2.8 2,-0.2 -1,-0.2 0.932 108.4 49.2 -57.1 -45.0 -7.7 2.4 1.4 30 30 A E H X S+ 0 0 92 -4,-1.2 4,-3.1 2,-0.2 -2,-0.2 0.942 111.6 48.1 -59.8 -48.3 -4.9 4.3 3.3 31 31 A L H X S+ 0 0 54 -4,-2.5 4,-3.0 2,-0.2 -2,-0.2 0.898 112.1 49.5 -58.5 -45.2 -3.2 5.2 -0.0 32 32 A K H X S+ 0 0 122 -4,-3.0 4,-2.7 2,-0.2 -2,-0.2 0.943 113.9 44.8 -59.6 -47.2 -6.6 6.4 -1.5 33 33 A K H X S+ 0 0 124 -4,-2.8 4,-1.6 2,-0.2 -2,-0.2 0.919 114.0 50.9 -63.9 -40.0 -7.3 8.5 1.6 34 34 A a H X S+ 0 0 5 -4,-3.1 4,-3.1 2,-0.2 -2,-0.2 0.918 110.8 48.0 -57.1 -50.3 -3.6 9.7 1.4 35 35 A A H < S+ 0 0 60 -4,-3.0 -2,-0.2 1,-0.2 -1,-0.2 0.907 108.4 54.3 -60.6 -44.1 -4.1 10.6 -2.3 36 36 A A H < S+ 0 0 89 -4,-2.7 -1,-0.2 2,-0.2 -2,-0.2 0.801 114.7 42.4 -61.2 -32.0 -7.4 12.4 -1.4 37 37 A Q H < 0 0 131 -4,-1.6 -2,-0.2 -3,-0.2 -1,-0.2 0.966 360.0 360.0 -72.1 -64.4 -5.4 14.5 1.1 38 38 A Y < 0 0 175 -4,-3.1 -2,-0.2 -5,-0.1 -3,-0.2 0.342 360.0 360.0 -84.3 360.0 -2.3 15.2 -1.0