==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 14-DEC-95 1EIT . COMPND 2 MOLECULE: MU-AGATOXIN-I; . SOURCE 2 ORGANISM_SCIENTIFIC: AGELENOPSIS APERTA; . AUTHOR D.O.OMECINSKY,M.D.REILY . 36 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3183.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 58.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 19.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 230 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 119.8 9.6 -9.1 3.8 2 2 A a - 0 0 58 12,-0.0 14,-0.2 16,-0.0 13,-0.0 0.340 360.0 -60.5 -94.8-133.0 7.9 -6.6 1.4 3 3 A V B -a 16 0A 29 12,-0.8 14,-1.3 4,-0.1 3,-0.1 -0.958 66.5-151.6-110.5 103.7 6.4 -3.2 2.7 4 4 A P > - 0 0 64 0, 0.0 3,-1.6 0, 0.0 28,-0.5 0.031 37.4 -49.4 -58.0-178.8 3.6 -4.4 5.3 5 5 A E T 3 S+ 0 0 96 1,-0.3 28,-0.2 26,-0.1 3,-0.1 -0.211 129.3 15.4 -58.4 142.3 0.4 -2.7 6.4 6 6 A N T 3 S+ 0 0 124 26,-1.5 2,-0.3 1,-0.3 -1,-0.3 0.309 96.6 129.3 57.9 2.6 0.7 1.0 7.3 7 7 A G < - 0 0 20 -3,-1.6 25,-1.3 -4,-0.1 2,-0.4 -0.649 68.9-113.7 -77.6 136.8 4.2 0.9 5.6 8 8 A H + 0 0 157 -2,-0.3 23,-0.3 23,-0.2 2,-0.1 -0.606 50.1 166.0 -83.0 120.9 4.5 3.8 3.2 9 9 A b - 0 0 7 -2,-0.4 2,-0.2 14,-0.2 6,-0.2 -0.121 33.1-132.4-123.5-153.7 4.7 2.5 -0.5 10 10 A R - 0 0 63 4,-1.5 2,-1.8 -2,-0.1 3,-0.3 -0.725 17.5-137.4-173.7 116.0 4.5 3.4 -4.2 11 11 A D S S+ 0 0 111 -2,-0.2 4,-0.1 1,-0.2 13,-0.0 -0.306 107.0 39.6 -79.6 54.7 2.4 1.5 -6.9 12 12 A W S S+ 0 0 199 -2,-1.8 -1,-0.2 2,-0.1 3,-0.1 0.223 133.7 5.3-167.2 -50.3 5.4 1.9 -9.3 13 13 A Y S S+ 0 0 181 -3,-0.3 2,-0.7 1,-0.2 -2,-0.1 0.728 115.0 58.0-124.2 -61.5 8.7 1.4 -7.1 14 14 A D S S- 0 0 91 1,-0.0 -4,-1.5 -12,-0.0 2,-0.5 -0.729 77.7-145.5 -90.5 110.7 8.2 0.3 -3.4 15 15 A E - 0 0 162 -2,-0.7 -12,-0.8 -6,-0.2 2,-0.1 -0.634 4.1-148.1 -88.4 122.0 6.2 -3.0 -3.4 16 16 A c B -a 3 0A 13 -2,-0.5 6,-0.2 -14,-0.2 3,-0.0 -0.470 37.3 -87.9 -75.9 154.5 3.6 -3.8 -0.7 17 17 A a > - 0 0 36 -14,-1.3 3,-1.2 -2,-0.1 2,-1.1 -0.026 37.5 -99.5 -60.7 162.6 3.1 -7.6 0.2 18 18 A E T 3 S+ 0 0 207 1,-0.2 -1,-0.1 3,-0.1 3,-0.1 -0.763 119.9 49.1 -85.6 95.9 0.8 -10.1 -1.5 19 19 A G T 3 S+ 0 0 36 -2,-1.1 16,-0.8 14,-0.1 2,-0.4 -0.004 111.5 46.3 150.6 -30.3 -1.9 -9.8 1.2 20 20 A F E < S-B 34 0B 50 -3,-1.2 14,-0.3 14,-0.2 2,-0.2 -0.983 79.3-138.7-134.5 126.5 -2.2 -5.9 1.4 21 21 A Y E -B 33 0B 118 12,-1.8 12,-1.8 -2,-0.4 2,-1.2 -0.599 28.1-106.1 -83.3 143.1 -2.4 -3.9 -1.9 22 22 A b E -B 32 0B 14 -2,-0.2 2,-0.9 10,-0.2 10,-0.2 -0.552 33.9-161.7 -77.7 96.3 -0.4 -0.6 -2.2 23 23 A S E -B 31 0B 26 8,-1.9 8,-1.7 -2,-1.2 2,-1.0 -0.706 6.5-172.2 -79.8 102.2 -3.1 2.1 -1.9 24 24 A d E - 0 0 31 -2,-0.9 6,-0.2 6,-0.2 5,-0.1 -0.768 4.9-177.4-108.7 87.2 -1.5 5.3 -3.3 25 25 A R E S- 0 0 179 -2,-1.0 -1,-0.2 1,-0.3 5,-0.1 0.880 80.9 -7.4 -54.9 -50.4 -4.0 8.1 -2.6 26 26 A Q E > S-B 29 0B 129 3,-1.1 3,-1.5 0, 0.0 -1,-0.3 -0.789 107.0 -88.5-144.1 101.5 -2.0 10.9 -4.3 27 27 A P T 3 S+ 0 0 49 0, 0.0 -17,-0.1 0, 0.0 3,-0.1 -0.229 112.2 28.4 -54.5 135.0 1.6 9.6 -5.4 28 28 A P T 3 S+ 0 0 91 0, 0.0 2,-0.3 0, 0.0 -3,-0.1 -0.980 110.6 76.4 -83.2 -5.5 4.2 9.7 -3.8 29 29 A K E < +B 26 0B 136 -3,-1.5 -3,-1.1 -5,-0.1 2,-0.3 -0.504 65.2 134.5 -75.8 126.2 2.1 9.4 -0.5 30 30 A d E - 0 0 9 -2,-0.3 2,-0.3 -6,-0.2 -6,-0.2 -0.968 30.2-168.6-157.5 163.6 0.8 5.7 -0.1 31 31 A I E -B 23 0B 44 -8,-1.7 -8,-1.9 -23,-0.3 2,-0.4 -0.966 37.2 -88.7-151.4 169.0 0.4 2.8 2.4 32 32 A c E -B 22 0B 3 -25,-1.3 -26,-1.5 -28,-0.5 2,-0.4 -0.684 44.4-172.6 -81.2 133.8 -0.3 -0.8 2.4 33 33 A R E -B 21 0B 104 -12,-1.8 -12,-1.8 -2,-0.4 -14,-0.1 -0.999 23.7-112.3-140.6 124.8 -4.1 -1.5 2.7 34 34 A N E -B 20 0B 52 -2,-0.4 2,-0.6 -14,-0.3 -14,-0.2 -0.298 22.7-125.3 -66.8 138.0 -5.8 -4.9 3.2 35 35 A N 0 0 102 -16,-0.8 -1,-0.1 -2,-0.0 0, 0.0 -0.745 360.0 360.0 -80.5 118.0 -8.0 -6.4 0.4 36 36 A N 0 0 162 -2,-0.6 -1,-0.0 0, 0.0 -2,-0.0 -0.917 360.0 360.0-117.2 360.0 -11.5 -7.1 2.1