==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 20-MAR-07 2EJS . COMPND 2 MOLECULE: AUTOCRINE MOTILITY FACTOR RECEPTOR, ISOFORM 2; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.Z.M.RUHUL MOMEN,S.KITASAKA,H.HIROTA,F.HAYASHI,S.YOKOYAMA, . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4874.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 63.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 44.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 135 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 143.7 -25.0 10.7 -5.4 2 2 A S - 0 0 126 0, 0.0 2,-0.2 0, 0.0 0, 0.0 -0.977 360.0-173.8-162.1 162.6 -24.5 6.9 -5.7 3 3 A S + 0 0 124 -2,-0.3 2,-0.2 1,-0.1 0, 0.0 -0.661 42.8 85.7-168.9 105.8 -22.3 4.3 -7.3 4 4 A G - 0 0 80 -2,-0.2 2,-0.3 3,-0.0 3,-0.1 -0.467 32.2-175.5 159.1 127.4 -22.8 0.5 -7.1 5 5 A S - 0 0 109 1,-0.5 0, 0.0 -2,-0.2 0, 0.0 -0.843 61.7 -41.4-143.2 101.3 -24.8 -2.1 -9.1 6 6 A S S S- 0 0 123 -2,-0.3 2,-1.3 1,-0.1 -1,-0.5 0.137 100.7 -39.1 66.3 170.8 -24.8 -5.7 -7.9 7 7 A G S S+ 0 0 76 1,-0.2 -1,-0.1 -3,-0.1 -3,-0.0 -0.542 72.4 153.1 -70.5 96.2 -21.8 -7.5 -6.6 8 8 A A - 0 0 90 -2,-1.3 -1,-0.2 0, 0.0 -2,-0.1 0.930 69.4 -77.3 -87.8 -60.9 -19.1 -6.2 -8.9 9 9 A S - 0 0 95 -3,-0.2 -2,-0.1 0, 0.0 -3,-0.0 0.136 45.2-148.9-169.7 -50.4 -16.0 -6.5 -6.8 10 10 A N - 0 0 141 1,-0.2 2,-0.5 2,-0.1 -6,-0.0 0.945 15.6-172.9 58.8 95.1 -15.8 -3.7 -4.2 11 11 A S > + 0 0 61 1,-0.2 4,-1.0 2,-0.1 -1,-0.2 -0.845 17.5 166.9-123.8 93.0 -12.1 -3.0 -3.7 12 12 A Q H > S+ 0 0 164 -2,-0.5 4,-1.9 2,-0.2 3,-0.3 0.891 80.3 56.2 -69.7 -41.5 -11.5 -0.6 -0.8 13 13 A L H > S+ 0 0 28 1,-0.2 4,-2.6 2,-0.2 5,-0.2 0.933 97.6 62.9 -55.2 -49.9 -7.8 -1.3 -0.7 14 14 A N H > S+ 0 0 73 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.887 105.0 47.6 -40.5 -51.5 -7.5 -0.5 -4.3 15 15 A A H X S+ 0 0 56 -4,-1.0 4,-2.8 -3,-0.3 5,-0.3 0.963 107.3 55.2 -55.7 -57.2 -8.5 3.0 -3.4 16 16 A M H X S+ 0 0 41 -4,-1.9 4,-2.4 1,-0.2 -1,-0.2 0.885 107.1 51.4 -41.6 -52.4 -6.1 3.2 -0.5 17 17 A A H X S+ 0 0 0 -4,-2.6 4,-3.7 2,-0.2 3,-0.5 0.960 110.0 47.9 -50.6 -60.8 -3.3 2.3 -2.8 18 18 A H H X S+ 0 0 91 -4,-2.2 4,-2.7 1,-0.3 -2,-0.2 0.930 108.6 54.2 -44.8 -58.9 -4.2 5.1 -5.3 19 19 A Q H X S+ 0 0 130 -4,-2.8 4,-1.4 1,-0.2 -1,-0.3 0.870 115.3 41.1 -43.2 -46.1 -4.5 7.6 -2.5 20 20 A I H X S+ 0 0 4 -4,-2.4 4,-4.2 -3,-0.5 -2,-0.2 0.972 107.1 59.8 -67.7 -56.5 -1.0 6.6 -1.4 21 21 A Q H < S+ 0 0 76 -4,-3.7 -2,-0.2 1,-0.2 -1,-0.2 0.836 103.1 56.7 -38.5 -43.5 0.4 6.4 -5.0 22 22 A E H < S+ 0 0 99 -4,-2.7 -1,-0.2 -5,-0.2 -2,-0.2 0.972 116.4 31.4 -54.2 -62.5 -0.6 10.1 -5.2 23 23 A M H < S+ 0 0 144 -4,-1.4 -2,-0.2 1,-0.3 -1,-0.2 0.786 137.5 30.9 -67.0 -28.7 1.5 11.2 -2.2 24 24 A F < + 0 0 22 -4,-4.2 -1,-0.3 -5,-0.1 -2,-0.2 -0.702 64.5 153.6-134.8 81.5 4.0 8.5 -3.0 25 25 A P + 0 0 80 0, 0.0 -1,-0.1 0, 0.0 -3,-0.1 0.834 66.2 75.3 -74.9 -35.0 4.1 7.7 -6.8 26 26 A Q S S+ 0 0 148 -3,-0.1 -5,-0.1 -5,-0.1 -2,-0.1 0.891 87.0 70.4 -40.7 -53.9 7.7 6.5 -6.5 27 27 A V S S- 0 0 16 -3,-0.1 -3,-0.1 1,-0.1 22,-0.0 -0.440 90.6-121.0 -70.1 141.1 6.4 3.3 -5.0 28 28 A P > - 0 0 25 0, 0.0 4,-1.3 0, 0.0 -1,-0.1 -0.136 12.0-122.5 -75.0 175.3 4.5 1.0 -7.3 29 29 A Y H > S+ 0 0 69 2,-0.2 4,-3.4 3,-0.2 5,-0.3 0.932 105.5 57.5 -83.7 -54.4 0.9 -0.2 -6.9 30 30 A H H > S+ 0 0 128 1,-0.2 4,-2.4 2,-0.2 5,-0.1 0.898 114.4 41.1 -41.1 -54.5 1.4 -4.0 -6.9 31 31 A L H > S+ 0 0 39 2,-0.2 4,-2.5 1,-0.2 5,-0.4 0.977 114.0 51.9 -59.2 -59.5 3.8 -3.6 -4.0 32 32 A V H X S+ 0 0 3 -4,-1.3 4,-3.2 1,-0.2 -2,-0.2 0.919 110.4 49.1 -40.6 -63.3 1.7 -1.0 -2.2 33 33 A L H X S+ 0 0 43 -4,-3.4 4,-2.5 2,-0.2 3,-0.3 0.929 111.9 48.6 -41.6 -66.2 -1.4 -3.2 -2.4 34 34 A Q H >X S+ 0 0 112 -4,-2.4 3,-1.0 1,-0.3 4,-0.8 0.914 113.3 45.0 -38.9 -69.6 0.5 -6.2 -1.1 35 35 A D H >X>S+ 0 0 25 -4,-2.5 4,-4.2 1,-0.3 3,-1.1 0.842 111.4 57.0 -45.1 -38.4 1.9 -4.2 1.8 36 36 A L H 3X5S+ 0 0 0 -4,-3.2 4,-2.2 -5,-0.4 -1,-0.3 0.911 100.3 55.1 -60.4 -44.3 -1.6 -2.9 2.2 37 37 A Q H <<5S+ 0 0 126 -4,-2.5 -1,-0.3 -3,-1.0 -2,-0.2 0.615 119.5 36.4 -64.3 -11.6 -2.9 -6.4 2.6 38 38 A L H <<5S+ 0 0 106 -3,-1.1 -2,-0.2 -4,-0.8 -1,-0.2 0.831 127.8 30.0-103.0 -62.2 -0.4 -6.7 5.4 39 39 A T H <5S- 0 0 31 -4,-4.2 -3,-0.2 -5,-0.1 -2,-0.2 0.899 82.9-160.3 -65.9 -42.6 -0.3 -3.3 7.1 40 40 A R << + 0 0 174 -4,-2.2 2,-0.2 -5,-0.5 -4,-0.1 0.881 63.2 85.6 61.0 40.2 -3.9 -2.6 6.2 41 41 A S S > S- 0 0 46 -6,-0.1 4,-3.0 1,-0.1 5,-0.2 -0.597 72.1-144.7-172.9 103.8 -3.4 1.1 6.8 42 42 A V H > S+ 0 0 42 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.775 107.1 57.4 -40.1 -30.0 -2.1 3.5 4.2 43 43 A E H > S+ 0 0 145 2,-0.2 4,-2.7 1,-0.2 3,-0.3 0.993 109.3 37.5 -66.2 -64.7 -0.5 5.0 7.3 44 44 A I H 4 S+ 0 0 81 1,-0.2 4,-0.3 2,-0.2 -2,-0.2 0.728 116.0 60.6 -59.6 -21.3 1.5 2.0 8.5 45 45 A T H >X S+ 0 0 1 -4,-3.0 3,-0.9 2,-0.2 4,-0.6 0.940 109.5 36.8 -71.1 -49.9 2.0 1.4 4.8 46 46 A T H >X>S+ 0 0 14 -4,-2.4 4,-3.6 -3,-0.3 3,-1.0 0.815 100.7 76.5 -71.4 -32.1 3.9 4.7 4.2 47 47 A D H 3X5S+ 0 0 96 -4,-2.7 4,-0.7 1,-0.3 -1,-0.2 0.745 96.8 50.8 -49.8 -23.6 5.5 4.4 7.5 48 48 A N H <>>S+ 0 0 31 -3,-0.9 5,-1.4 -4,-0.3 4,-0.7 0.819 119.3 34.1 -83.1 -35.0 7.7 1.9 5.7 49 49 A I H <<5S+ 0 0 29 -3,-1.0 -2,-0.2 -4,-0.6 -3,-0.1 0.942 112.8 56.8 -82.9 -56.9 8.4 4.3 2.9 50 50 A L H <5S+ 0 0 123 -4,-3.6 -3,-0.2 1,-0.3 -2,-0.1 0.855 122.3 31.9 -41.1 -43.3 8.5 7.5 4.8 51 51 A E H <