==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 23-MAR-07 2EKF . COMPND 2 MOLECULE: ANCIENT UBIQUITOUS PROTEIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR A.Z.M.RUHUL MOMEN,H.HIROTA,F.HAYASHI,S.YOKOYAMA,RIKEN . 61 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4955.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 42.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 37.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 134 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 95.2 4.8 23.0 10.4 2 2 A S - 0 0 132 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.905 360.0-144.8-140.0 166.3 7.4 20.3 11.2 3 3 A S - 0 0 89 -2,-0.3 0, 0.0 1,-0.2 0, 0.0 -0.984 12.3-139.3-136.9 146.4 8.2 16.8 10.2 4 4 A G S S+ 0 0 86 -2,-0.3 -1,-0.2 0, 0.0 0, 0.0 0.997 86.3 44.5 -63.9 -78.0 9.6 13.8 12.1 5 5 A S S S- 0 0 101 1,-0.1 -2,-0.1 3,-0.0 3,-0.1 -0.112 103.8 -93.7 -63.8 166.6 12.0 12.3 9.6 6 6 A S S S- 0 0 126 1,-0.1 -3,-0.1 2,-0.0 -1,-0.1 0.931 81.0 -75.0 -45.6 -58.9 14.5 14.4 7.7 7 7 A G - 0 0 47 1,-0.0 -1,-0.1 0, 0.0 -4,-0.0 -0.080 46.6-174.4 151.5 103.9 12.1 14.6 4.7 8 8 A S - 0 0 108 2,-0.1 2,-1.8 -3,-0.1 -3,-0.0 -0.775 8.8-168.4-118.4 84.4 11.3 12.0 2.1 9 9 A P + 0 0 128 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.550 44.0 117.3 -75.0 85.8 9.0 13.7 -0.5 10 10 A D + 0 0 91 -2,-1.8 -2,-0.1 2,-0.1 0, 0.0 -0.919 29.8 167.7-156.4 125.3 7.9 10.5 -2.3 11 11 A V + 0 0 116 -2,-0.3 -1,-0.0 4,-0.0 5,-0.0 -0.168 35.0 143.2-129.4 36.6 4.5 9.0 -2.7 12 12 A Q > - 0 0 123 1,-0.1 4,-1.8 4,-0.0 5,-0.1 -0.172 70.0 -96.0 -72.5 170.3 5.3 6.5 -5.4 13 13 A L H > S+ 0 0 65 1,-0.2 4,-4.0 2,-0.2 5,-0.3 0.898 127.1 55.0 -53.0 -44.0 3.7 3.0 -5.6 14 14 A A H > S+ 0 0 60 1,-0.3 4,-2.5 2,-0.2 -1,-0.2 0.959 104.0 52.1 -53.7 -57.2 6.8 1.7 -3.8 15 15 A T H > S+ 0 0 54 2,-0.2 4,-1.3 1,-0.2 -1,-0.3 0.840 117.9 41.0 -47.9 -37.8 6.3 4.1 -1.0 16 16 A L H >X S+ 0 0 37 -4,-1.8 4,-1.4 2,-0.2 3,-0.6 0.984 109.2 53.7 -74.4 -64.8 2.8 2.8 -0.8 17 17 A A H 3X S+ 0 0 1 -4,-4.0 4,-1.7 1,-0.3 -2,-0.2 0.777 106.6 61.4 -40.0 -30.2 3.4 -0.9 -1.3 18 18 A Q H 3X S+ 0 0 133 -4,-2.5 4,-4.1 -5,-0.3 -1,-0.3 0.981 109.2 35.6 -62.3 -60.5 5.8 -0.3 1.6 19 19 A R H - 0 0 74 0, 0.0 4,-1.7 0, 0.0 -1,-0.1 -0.301 10.5-130.9 -74.9 161.5 2.6 -10.0 -2.4 29 29 A L H > S+ 0 0 75 2,-0.2 4,-3.6 3,-0.2 5,-0.3 0.852 104.8 61.9 -79.1 -37.9 3.9 -6.7 -3.7 30 30 A G H > S+ 0 0 59 1,-0.2 4,-1.2 2,-0.2 -1,-0.2 0.911 111.4 38.1 -53.1 -48.0 2.9 -7.5 -7.2 31 31 A V H > S+ 0 0 61 2,-0.2 4,-4.5 1,-0.2 3,-0.3 0.929 114.9 54.7 -69.4 -47.2 -0.7 -7.7 -6.2 32 32 A I H X S+ 0 0 0 -4,-1.7 4,-3.6 1,-0.3 5,-0.3 0.950 103.9 54.2 -49.6 -58.6 -0.4 -4.8 -3.8 33 33 A Q H X S+ 0 0 103 -4,-3.6 4,-1.3 1,-0.2 -1,-0.3 0.855 117.4 38.9 -43.8 -42.4 1.0 -2.6 -6.5 34 34 A R H X S+ 0 0 138 -4,-1.2 4,-2.2 -3,-0.3 3,-0.3 0.945 111.6 54.9 -74.5 -51.9 -2.1 -3.5 -8.5 35 35 A D H < S+ 0 0 22 -4,-4.5 4,-0.5 1,-0.3 -2,-0.2 0.853 107.7 53.7 -49.1 -38.1 -4.5 -3.4 -5.6 36 36 A L H >< S+ 0 0 1 -4,-3.6 3,-1.7 -5,-0.3 -1,-0.3 0.920 105.9 50.6 -63.4 -45.4 -3.2 0.1 -5.0 37 37 A A H 3< S+ 0 0 44 -4,-1.3 -1,-0.2 -3,-0.3 -2,-0.2 0.830 99.4 66.1 -61.0 -32.7 -4.0 1.1 -8.5 38 38 A K T 3< S- 0 0 37 -4,-2.2 -1,-0.3 18,-0.1 17,-0.2 0.738 134.2 -14.4 -60.4 -22.3 -7.5 -0.4 -8.0 39 39 A T S < S- 0 0 54 -3,-1.7 -3,-0.2 -4,-0.5 -2,-0.1 0.246 75.2-128.5-139.7 -90.5 -7.8 2.5 -5.5 40 40 A G + 0 0 43 1,-0.3 2,-0.3 -5,-0.2 -4,-0.1 0.601 67.9 100.5 127.8 42.2 -4.9 4.5 -4.3 41 41 A C > - 0 0 64 1,-0.1 4,-2.9 -5,-0.1 -1,-0.3 -0.878 60.7-144.5-155.8 117.3 -5.1 4.6 -0.5 42 42 A V H > S+ 0 0 21 -2,-0.3 4,-2.3 1,-0.2 -1,-0.1 0.913 107.4 50.2 -44.4 -53.6 -3.1 2.4 1.9 43 43 A D H > S+ 0 0 115 1,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.935 110.1 50.4 -51.0 -53.1 -6.2 2.2 4.2 44 44 A L H > S+ 0 0 82 1,-0.2 4,-3.2 2,-0.2 5,-0.2 0.953 106.3 54.8 -49.4 -60.0 -8.3 1.2 1.2 45 45 A T H X S+ 0 0 0 -4,-2.9 4,-3.4 1,-0.2 5,-0.3 0.894 104.2 55.2 -38.7 -58.9 -5.9 -1.5 0.2 46 46 A I H X S+ 0 0 53 -4,-2.3 4,-2.8 1,-0.2 -1,-0.2 0.918 113.7 40.2 -40.5 -62.4 -6.1 -3.0 3.7 47 47 A T H X S+ 0 0 68 -4,-1.9 4,-3.7 2,-0.2 -1,-0.2 0.953 111.6 56.2 -52.9 -57.4 -9.8 -3.3 3.4 48 48 A N H < S+ 0 0 5 -4,-3.2 -1,-0.2 1,-0.3 -2,-0.2 0.888 111.5 44.7 -40.8 -51.6 -9.7 -4.4 -0.2 49 49 A L H < S+ 0 0 62 -4,-3.4 -1,-0.3 -5,-0.2 -2,-0.2 0.934 113.3 50.6 -60.0 -48.5 -7.5 -7.2 0.9 50 50 A L H < S- 0 0 125 -4,-2.8 -2,-0.2 -5,-0.3 -1,-0.2 0.951 140.0 -7.9 -53.6 -55.2 -9.7 -7.9 3.9 51 51 A E S < S- 0 0 159 -4,-3.7 -3,-0.2 -5,-0.1 -4,-0.0 0.665 99.8 -89.8-105.8 -95.6 -12.8 -8.0 1.7 52 52 A G + 0 0 31 2,-0.0 -1,-0.1 0, 0.0 -2,-0.1 0.194 39.7 172.1-148.2 -82.5 -12.5 -7.0 -2.0 53 53 A A + 0 0 54 1,-0.2 2,-0.4 -6,-0.1 -5,-0.1 0.974 25.0 163.5 52.2 82.7 -13.0 -3.4 -3.1 54 54 A V + 0 0 99 -15,-0.0 2,-0.3 -6,-0.0 -1,-0.2 -0.998 4.3 128.9-135.5 130.5 -12.0 -3.7 -6.7 55 55 A A + 0 0 62 -2,-0.4 0, 0.0 -17,-0.2 0, 0.0 -0.939 40.9 35.0-163.1 178.3 -12.7 -1.2 -9.5 56 56 A F - 0 0 168 -2,-0.3 -1,-0.1 1,-0.1 -18,-0.1 0.235 59.7-146.5 51.2 175.6 -11.1 0.9 -12.2 57 57 A M - 0 0 128 -20,-0.1 -1,-0.1 -19,-0.0 -19,-0.0 -0.868 8.2-117.0-176.8 142.3 -8.2 -0.4 -14.3 58 58 A P - 0 0 53 0, 0.0 2,-0.3 0, 0.0 -20,-0.0 -0.064 29.2-126.4 -75.1-179.3 -5.1 0.8 -16.1 59 59 A E + 0 0 175 0, 0.0 2,-0.2 0, 0.0 -2,-0.0 -0.929 32.4 153.0-132.0 155.8 -4.4 0.6 -19.8 60 60 A D 0 0 162 -2,-0.3 0, 0.0 0, 0.0 0, 0.0 -0.627 360.0 360.0 176.8 119.9 -1.6 -0.8 -22.0 61 61 A I 0 0 207 -2,-0.2 0, 0.0 0, 0.0 0, 0.0 0.340 360.0 360.0 -84.5 360.0 -1.5 -2.2 -25.5