==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELM . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA,T.UMEHARA, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3549.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 56.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 21.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 102 0, 0.0 6,-0.4 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0-148.0 -15.8 -12.5 -7.5 2 2 A S + 0 0 140 4,-0.1 2,-0.3 2,-0.1 6,-0.0 -0.088 360.0 131.6 -39.6 114.6 -16.4 -9.6 -9.8 3 3 A S S S- 0 0 60 4,-0.0 2,-1.8 0, 0.0 -1,-0.0 -0.927 72.0 -75.1-157.4 178.6 -17.7 -6.8 -7.5 4 4 A G S S- 0 0 78 -2,-0.3 -2,-0.1 1,-0.2 0, 0.0 -0.302 93.2 -69.9 -81.7 55.1 -17.3 -3.2 -6.5 5 5 A S S S+ 0 0 44 -2,-1.8 3,-0.2 2,-0.1 -1,-0.2 0.893 107.4 120.0 61.2 41.0 -14.0 -3.9 -4.6 6 6 A S S S+ 0 0 85 -5,-0.2 2,-0.4 1,-0.1 15,-0.1 0.831 74.9 30.8-100.2 -47.8 -15.9 -5.8 -1.9 7 7 A G S S+ 0 0 48 -6,-0.4 2,-0.3 13,-0.1 -1,-0.1 -0.536 100.9 89.2-114.0 65.8 -14.4 -9.2 -2.0 8 8 A H - 0 0 117 -2,-0.4 13,-0.7 -3,-0.2 14,-0.5 -0.921 55.9-148.8-161.2 131.6 -10.8 -8.6 -3.1 9 9 A L E -A 20 0A 80 -2,-0.3 2,-0.4 11,-0.2 11,-0.2 -0.881 13.6-147.0-107.0 133.0 -7.5 -7.9 -1.3 10 10 A Y E -A 19 0A 104 9,-1.1 9,-1.5 -2,-0.4 2,-0.3 -0.794 11.5-136.7-100.2 139.1 -4.8 -5.7 -2.8 11 11 A Y E -A 18 0A 169 -2,-0.4 7,-0.3 7,-0.2 5,-0.1 -0.669 25.2-105.4 -94.2 148.1 -1.1 -6.3 -2.2 12 12 A C - 0 0 12 5,-0.9 -1,-0.1 -2,-0.3 6,-0.1 -0.359 17.0-140.2 -69.9 149.2 1.4 -3.6 -1.5 13 13 A S S S+ 0 0 122 3,-0.1 -1,-0.1 1,-0.1 -2,-0.0 0.931 100.2 36.7 -75.2 -48.3 3.9 -2.6 -4.2 14 14 A Q S S+ 0 0 146 3,-0.1 2,-0.2 19,-0.0 -1,-0.1 0.987 129.7 17.8 -67.9 -61.7 6.9 -2.2 -1.9 15 15 A C S S- 0 0 41 2,-0.1 2,-0.4 1,-0.0 14,-0.0 -0.507 85.4-104.0-105.7 176.2 6.2 -5.0 0.5 16 16 A H S S+ 0 0 185 -2,-0.2 2,-0.7 -5,-0.1 -3,-0.1 -0.260 71.2 134.1 -94.9 46.0 4.0 -8.1 0.4 17 17 A Y - 0 0 112 -2,-0.4 -5,-0.9 2,-0.0 2,-0.4 -0.858 30.2-179.7-102.1 108.6 1.4 -6.6 2.7 18 18 A S E +A 11 0A 40 -2,-0.7 2,-0.3 -7,-0.3 -7,-0.2 -0.904 3.2 172.1-111.3 134.8 -2.2 -7.1 1.4 19 19 A S E -A 10 0A 38 -9,-1.5 -9,-1.1 -2,-0.4 6,-0.2 -0.996 35.7-100.2-142.0 145.4 -5.3 -5.9 3.1 20 20 A I E S+A 9 0A 73 -2,-0.3 -11,-0.2 -11,-0.2 5,-0.1 -0.215 100.4 39.8 -61.0 151.8 -9.0 -5.7 2.3 21 21 A T >> - 0 0 72 -13,-0.7 3,-2.7 -16,-0.1 4,-1.3 0.960 65.7-166.4 72.5 53.9 -10.4 -2.4 1.1 22 22 A K H 3> S+ 0 0 71 -14,-0.5 4,-1.9 1,-0.3 -2,-0.1 0.795 79.8 80.0 -39.7 -33.6 -7.5 -1.3 -1.1 23 23 A N H 34 S+ 0 0 115 1,-0.2 -1,-0.3 2,-0.2 4,-0.2 0.879 103.6 31.5 -42.7 -47.4 -9.1 2.1 -1.0 24 24 A C H X> S+ 0 0 81 -3,-2.7 3,-3.0 1,-0.2 4,-0.6 0.861 104.8 74.7 -80.6 -38.8 -7.6 2.6 2.5 25 25 A L H >X S+ 0 0 22 -4,-1.3 4,-1.2 1,-0.3 3,-0.5 0.852 78.1 77.7 -40.5 -43.5 -4.5 0.6 1.8 26 26 A K H 3X S+ 0 0 129 -4,-1.9 4,-1.3 1,-0.3 -1,-0.3 0.822 91.1 55.2 -36.3 -41.4 -3.3 3.5 -0.3 27 27 A R H X> S+ 0 0 175 -3,-3.0 4,-2.8 2,-0.2 3,-0.8 0.967 97.3 60.9 -59.7 -56.2 -2.4 5.2 3.0 28 28 A H H S+ 0 0 25 -4,-0.6 4,-2.5 -3,-0.5 5,-1.0 0.883 102.1 52.9 -35.8 -60.0 -0.2 2.4 4.2 29 29 A V H 3X5S+ 0 0 47 -4,-1.2 4,-1.6 1,-0.3 -1,-0.3 0.897 112.6 44.7 -45.1 -49.6 2.1 2.8 1.3 30 30 A I H <<5S+ 0 0 85 -4,-1.3 -1,-0.3 -3,-0.8 -2,-0.2 0.895 122.4 38.4 -63.9 -41.3 2.4 6.5 2.1 31 31 A Q H ><5S+ 0 0 128 -4,-2.8 3,-0.7 2,-0.2 -2,-0.2 0.993 127.1 31.0 -72.4 -70.0 2.8 5.7 5.8 32 32 A K H 3<5S+ 0 0 145 -4,-2.5 2,-0.4 1,-0.3 -3,-0.2 0.878 136.4 32.3 -57.0 -39.6 5.0 2.6 5.8 33 33 A H T 3<