==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELN . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA,T.UMEHARA, . 38 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3417.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 47.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 18.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 136 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 80.8 -9.1 -7.1 -21.3 2 2 A S - 0 0 128 1,-0.1 4,-0.0 4,-0.0 0, 0.0 -0.270 360.0-167.6 -77.2 166.9 -11.0 -9.5 -19.0 3 3 A S + 0 0 94 1,-0.1 2,-0.8 -2,-0.0 3,-0.5 0.660 12.7 176.5-121.9 -44.2 -10.6 -9.6 -15.2 4 4 A G S S+ 0 0 63 1,-0.3 -1,-0.1 2,-0.1 0, 0.0 -0.600 75.2 43.3 75.1-108.1 -12.4 -12.7 -14.1 5 5 A S S S- 0 0 94 -2,-0.8 -1,-0.3 1,-0.1 -2,-0.0 0.829 87.6-158.2 -37.8 -41.5 -11.9 -13.0 -10.3 6 6 A S + 0 0 99 -3,-0.5 -1,-0.1 2,-0.0 -2,-0.1 0.917 67.4 48.1 58.6 45.6 -12.6 -9.3 -10.2 7 7 A G + 0 0 56 -4,-0.2 2,-0.3 2,-0.0 16,-0.1 -0.130 61.6 158.4 151.2 108.8 -10.8 -8.9 -6.9 8 8 A I - 0 0 112 14,-0.1 2,-0.3 13,-0.1 13,-0.1 -0.975 48.7 -83.1-145.3 157.5 -7.5 -10.1 -5.6 9 9 A L - 0 0 97 -2,-0.3 2,-0.8 1,-0.1 -2,-0.0 -0.433 41.8-140.9 -63.5 122.6 -4.9 -9.3 -2.9 10 10 A L E -A 21 0A 56 11,-1.8 11,-1.1 -2,-0.3 2,-0.6 -0.779 10.9-150.8 -91.3 109.2 -2.7 -6.4 -4.1 11 11 A K E -A 20 0A 155 -2,-0.8 9,-0.2 9,-0.2 7,-0.1 -0.696 29.1-106.7 -83.0 117.1 0.9 -7.0 -3.0 12 12 A C - 0 0 11 7,-3.3 4,-0.1 -2,-0.6 -1,-0.1 -0.026 19.8-136.9 -41.1 137.5 2.7 -3.7 -2.5 13 13 A P S S+ 0 0 92 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 0.820 71.1 111.7 -69.7 -32.4 5.2 -3.1 -5.3 14 14 A T S S- 0 0 52 1,-0.1 3,-0.5 2,-0.1 5,-0.2 -0.180 81.4-109.0 -47.0 124.5 7.9 -1.9 -2.9 15 15 A D S S+ 0 0 161 1,-0.2 2,-0.3 3,-0.1 -1,-0.1 -0.367 100.1 8.0 -60.7 129.2 10.7 -4.5 -2.8 16 16 A G S S+ 0 0 69 1,-0.3 -1,-0.2 -4,-0.1 -2,-0.1 -0.194 95.9 125.2 93.4 -43.2 10.7 -6.4 0.4 17 17 A C - 0 0 36 -3,-0.5 -1,-0.3 -2,-0.3 0, 0.0 -0.214 44.3-163.9 -52.5 135.5 7.5 -4.9 1.6 18 18 A D + 0 0 139 -3,-0.1 2,-0.5 -7,-0.1 -1,-0.1 -0.233 40.2 133.3-117.2 42.1 4.9 -7.6 2.5 19 19 A Y + 0 0 76 -5,-0.2 -7,-3.3 -7,-0.0 2,-0.4 -0.839 24.2 166.4 -99.1 124.4 1.8 -5.4 2.6 20 20 A S E +A 11 0A 56 -2,-0.5 -9,-0.2 -9,-0.2 -11,-0.1 -0.999 6.0 172.5-140.4 135.6 -1.3 -6.7 0.8 21 21 A T E -A 10 0A 17 -11,-1.1 -11,-1.8 -2,-0.4 -13,-0.1 -0.999 37.9-132.3-144.6 144.1 -4.9 -5.6 0.9 22 22 A P S S+ 0 0 93 0, 0.0 2,-0.4 0, 0.0 -14,-0.1 0.545 89.0 86.0 -69.7 -6.4 -8.1 -6.5 -1.1 23 23 A D > - 0 0 76 1,-0.2 4,-1.0 -13,-0.1 -2,-0.2 -0.828 62.0-161.5-101.5 134.8 -8.7 -2.8 -1.4 24 24 A K H > S+ 0 0 137 -2,-0.4 4,-2.0 2,-0.2 -1,-0.2 0.962 90.3 47.6 -75.8 -55.9 -7.2 -0.8 -4.3 25 25 A Y H > S+ 0 0 176 1,-0.2 4,-1.7 2,-0.2 5,-0.2 0.952 108.6 54.5 -49.4 -60.1 -7.5 2.7 -2.8 26 26 A K H > S+ 0 0 115 1,-0.2 4,-1.8 2,-0.2 3,-0.4 0.886 107.0 53.0 -41.1 -51.0 -6.1 1.7 0.6 27 27 A L H >X S+ 0 0 13 -4,-1.0 4,-2.5 1,-0.2 3,-0.7 0.954 101.2 58.0 -51.6 -58.0 -3.0 0.4 -1.2 28 28 A Q H 3< S+ 0 0 87 -4,-2.0 4,-0.3 1,-0.3 -1,-0.2 0.860 108.1 48.5 -40.4 -45.6 -2.4 3.6 -3.0 29 29 A A H >< S+ 0 0 63 -4,-1.7 3,-1.4 -3,-0.4 4,-0.5 0.893 108.6 53.1 -64.6 -41.0 -2.2 5.3 0.3 30 30 A H H XX S+ 0 0 28 -4,-1.8 3,-2.3 -3,-0.7 4,-0.5 0.897 95.7 66.9 -61.5 -41.8 0.2 2.7 1.7 31 31 A L H 3X S+ 0 0 41 -4,-2.5 4,-1.0 1,-0.3 3,-0.3 0.676 96.1 60.1 -53.9 -15.6 2.5 3.2 -1.2 32 32 A K H <4 S+ 0 0 111 -3,-1.4 -1,-0.3 -4,-0.3 -2,-0.2 0.760 83.6 76.0 -83.8 -27.4 3.0 6.6 0.3 33 33 A V H <4 S+ 0 0 86 -3,-2.3 3,-0.3 -4,-0.5 -1,-0.2 0.762 102.4 42.9 -54.7 -25.1 4.3 5.2 3.6 34 34 A H H < S+ 0 0 72 -4,-0.5 2,-0.3 -3,-0.3 -1,-0.2 0.927 116.2 42.5 -86.1 -54.7 7.6 4.5 1.7 35 35 A T S < S+ 0 0 105 -4,-1.0 2,-0.6 2,-0.0 -1,-0.2 -0.071 91.2 117.0 -84.5 35.7 8.0 7.8 -0.3 36 36 A A + 0 0 63 -3,-0.3 2,-0.3 -2,-0.3 -4,-0.0 -0.919 30.7 141.2-110.6 115.3 6.9 9.7 2.8 37 37 A L 0 0 129 -2,-0.6 -3,-0.0 1,-0.0 -2,-0.0 -0.960 360.0 360.0-155.1 133.4 9.5 12.1 4.3 38 38 A D 0 0 223 -2,-0.3 -1,-0.0 0, 0.0 -2,-0.0 0.565 360.0 360.0 -55.0 360.0 9.3 15.6 5.9