==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELQ . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA,T.UMEHARA, . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3333.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 22.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 119 0, 0.0 4,-0.0 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 152.8 0.9 -24.9 7.7 2 2 A S + 0 0 127 2,-0.0 2,-0.4 0, 0.0 0, 0.0 -0.223 360.0 94.0-126.7 42.3 2.0 -25.1 4.0 3 3 A S S S- 0 0 101 1,-0.1 3,-0.2 3,-0.0 0, 0.0 -0.987 101.5 -22.8-139.7 127.1 -1.2 -26.5 2.5 4 4 A G S S+ 0 0 90 -2,-0.4 2,-1.6 1,-0.2 -1,-0.1 0.849 77.5 170.6 41.9 42.9 -4.1 -24.6 0.8 5 5 A S - 0 0 92 -4,-0.0 -1,-0.2 1,-0.0 0, 0.0 -0.612 32.3-135.5 -86.2 81.9 -3.0 -21.5 2.8 6 6 A S - 0 0 113 -2,-1.6 -3,-0.0 -3,-0.2 -1,-0.0 -0.058 23.2-155.3 -38.5 121.9 -5.1 -18.9 1.2 7 7 A G - 0 0 66 1,-0.1 -1,-0.1 2,-0.0 11,-0.0 0.505 21.3 -85.2 -77.2-135.3 -2.9 -15.9 0.6 8 8 A K - 0 0 123 1,-0.1 3,-0.2 11,-0.0 -1,-0.1 -0.954 14.8-125.8-141.2 159.3 -4.0 -12.3 0.3 9 9 A P S S+ 0 0 75 0, 0.0 2,-0.6 0, 0.0 11,-0.1 0.921 102.1 35.2 -69.8 -46.3 -5.3 -9.9 -2.4 10 10 A F E +A 19 0A 69 9,-1.0 9,-1.9 2,-0.0 2,-0.5 -0.938 67.8 172.6-117.2 113.2 -2.7 -7.2 -1.8 11 11 A K E -A 18 0A 119 -2,-0.6 7,-0.2 7,-0.2 5,-0.0 -0.925 35.6-121.5-124.0 107.3 0.8 -8.3 -0.9 12 12 A C - 0 0 4 5,-2.6 5,-0.2 -2,-0.5 -2,-0.0 -0.175 13.5-150.7 -46.3 123.3 3.5 -5.6 -0.8 13 13 A S S S+ 0 0 122 1,-0.2 -1,-0.2 3,-0.1 3,-0.1 0.684 94.0 56.6 -72.2 -17.7 6.2 -6.6 -3.2 14 14 A L S S+ 0 0 112 3,-0.1 2,-0.2 1,-0.1 -1,-0.2 0.963 120.8 2.8 -77.3 -57.1 8.7 -4.8 -1.0 15 15 A C S S- 0 0 47 2,-0.2 -1,-0.1 0, 0.0 0, 0.0 -0.566 85.7 -90.1-120.5-175.0 8.1 -6.6 2.3 16 16 A E S S+ 0 0 176 -2,-0.2 2,-0.5 -3,-0.1 -3,-0.1 0.041 79.6 131.7 -86.8 27.2 6.0 -9.5 3.6 17 17 A Y + 0 0 55 -5,-0.2 -5,-2.6 -6,-0.0 2,-0.3 -0.711 27.7 162.4 -85.9 124.3 3.2 -7.0 4.4 18 18 A A E +A 11 0A 26 -2,-0.5 2,-0.3 -7,-0.2 -7,-0.2 -0.986 13.1 179.8-142.1 151.1 -0.2 -8.0 3.2 19 19 A T E -A 10 0A 20 -9,-1.9 -9,-1.0 -2,-0.3 6,-0.0 -0.996 34.6-132.7-151.5 149.5 -3.8 -7.0 3.9 20 20 A R S S+ 0 0 197 -2,-0.3 2,-0.5 -11,-0.1 -1,-0.1 0.695 96.2 66.8 -74.0 -19.1 -7.3 -7.9 2.7 21 21 A S >> - 0 0 56 1,-0.1 4,-1.5 -11,-0.1 3,-0.7 -0.910 67.6-156.3-109.2 126.3 -8.1 -4.2 2.4 22 22 A K H 3> S+ 0 0 144 -2,-0.5 4,-2.2 1,-0.2 5,-0.1 0.783 94.5 65.7 -67.3 -27.0 -6.4 -2.0 -0.2 23 23 A S H 3> S+ 0 0 82 2,-0.2 4,-0.6 1,-0.2 -1,-0.2 0.832 103.2 46.9 -64.1 -32.8 -7.1 1.0 2.0 24 24 A N H X> S+ 0 0 80 -3,-0.7 4,-1.5 2,-0.2 3,-1.3 0.963 110.8 48.2 -73.5 -55.2 -4.8 -0.4 4.7 25 25 A L H 3X S+ 0 0 21 -4,-1.5 4,-3.2 1,-0.3 3,-0.3 0.895 102.3 65.1 -52.2 -43.9 -1.9 -1.3 2.4 26 26 A K H 3X S+ 0 0 133 -4,-2.2 4,-0.8 1,-0.3 -1,-0.3 0.844 104.8 46.0 -48.4 -37.2 -2.0 2.1 0.8 27 27 A A H X S+ 0 0 10 -4,-1.5 3,-1.8 -3,-0.3 4,-0.6 0.939 101.2 61.1 -68.2 -48.6 1.7 1.0 4.7 29 29 A M H >< S+ 0 0 72 -4,-3.2 3,-1.8 1,-0.3 -1,-0.2 0.838 95.2 65.3 -46.8 -37.0 3.3 1.5 1.3 30 30 A N H 3< S+ 0 0 98 -4,-0.8 4,-0.4 -5,-0.3 3,-0.3 0.880 89.3 64.6 -54.8 -40.5 3.8 5.1 2.5 31 31 A R H << S+ 0 0 153 -3,-1.8 2,-1.2 -4,-0.6 3,-0.4 0.760 86.4 75.5 -55.3 -24.6 6.2 3.9 5.2 32 32 A H S << S+ 0 0 48 -3,-1.8 -1,-0.3 -4,-0.6 -2,-0.1 -0.219 86.5 64.7 -83.6 46.7 8.4 2.7 2.2 33 33 A S S > S+ 0 0 101 -2,-1.2 3,-0.5 -3,-0.3 2,-0.3 0.578 89.1 58.0-131.3 -48.0 9.5 6.3 1.6 34 34 A T T 3 S- 0 0 111 -3,-0.4 -1,-0.3 -4,-0.4 0, 0.0 -0.666 121.7 -4.6 -93.3 147.4 11.5 7.6 4.6 35 35 A E T 3 0 0 176 -2,-0.3 -1,-0.2 1,-0.1 -4,-0.0 0.798 360.0 360.0 41.4 33.1 14.7 5.9 5.9 36 36 A K < 0 0 145 -3,-0.5 -1,-0.1 -4,-0.0 -4,-0.0 -0.989 360.0 360.0-151.5 360.0 13.9 3.3 3.2