==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELR . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA,T.UMEHARA, . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3155.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 104 0, 0.0 2,-0.5 0, 0.0 13,-0.2 0.000 360.0 360.0 360.0 112.7 7.5 -7.3 -5.5 2 2 A S - 0 0 95 11,-0.7 2,-0.4 13,-0.0 13,-0.0 -0.897 360.0-113.1-108.2 129.8 6.0 -10.3 -7.4 3 3 A S - 0 0 120 -2,-0.5 3,-0.1 1,-0.1 9,-0.0 -0.419 40.0-158.6 -61.3 113.4 3.2 -9.9 -9.8 4 4 A G - 0 0 41 -2,-0.4 2,-0.4 1,-0.1 -1,-0.1 0.099 29.0 -70.2 -79.0-163.5 0.2 -11.7 -8.3 5 5 A S - 0 0 107 1,-0.1 2,-0.7 2,-0.0 -1,-0.1 -0.787 54.2 -97.1 -97.5 135.4 -2.9 -13.1 -9.9 6 6 A S + 0 0 134 -2,-0.4 2,-0.5 -3,-0.1 3,-0.1 -0.253 61.9 163.4 -50.5 95.2 -5.6 -10.8 -11.3 7 7 A G - 0 0 40 -2,-0.7 4,-0.4 2,-0.2 -1,-0.0 -0.974 46.6-134.0-127.1 123.9 -7.9 -10.9 -8.3 8 8 A K S S+ 0 0 186 -2,-0.5 2,-0.3 2,-0.1 -1,-0.1 0.855 86.9 93.8 -34.3 -53.1 -10.7 -8.4 -7.7 9 9 A T S S- 0 0 68 1,-0.2 2,-0.2 -3,-0.1 -2,-0.2 -0.255 99.5-109.0 -49.7 104.6 -9.5 -8.2 -4.1 10 10 A H - 0 0 53 9,-0.5 9,-2.8 -2,-0.3 2,-0.4 -0.113 48.8-170.9 -40.9 95.6 -7.2 -5.2 -4.2 11 11 A L B -A 18 0A 42 -4,-0.4 2,-0.7 7,-0.2 7,-0.2 -0.783 18.5-137.4 -99.7 140.5 -3.9 -7.1 -3.8 12 12 A C > - 0 0 3 5,-2.6 4,-0.9 -2,-0.4 5,-0.3 -0.854 16.1-176.1-100.6 111.3 -0.6 -5.4 -3.3 13 13 A D T 4 S+ 0 0 73 -2,-0.7 -11,-0.7 1,-0.2 -1,-0.1 0.619 80.0 70.6 -78.0 -13.1 2.2 -6.9 -5.3 14 14 A M T 4 S- 0 0 95 -13,-0.2 -1,-0.2 3,-0.1 -11,-0.0 0.912 129.8 -9.5 -69.3 -43.8 4.7 -4.6 -3.6 15 15 A C T 4 S- 0 0 68 -3,-0.2 -2,-0.2 2,-0.1 -1,-0.0 0.654 98.6-103.8-122.3 -43.1 4.5 -6.3 -0.3 16 16 A G < + 0 0 48 -4,-0.9 2,-0.4 1,-0.2 -3,-0.2 0.635 64.0 147.1 119.4 28.3 1.6 -8.8 -0.6 17 17 A K - 0 0 117 -5,-0.3 -5,-2.6 8,-0.1 2,-0.4 -0.773 34.1-147.4 -97.7 138.9 -1.2 -7.2 1.4 18 18 A K B -A 11 0A 139 -2,-0.4 2,-0.3 -7,-0.2 -7,-0.2 -0.856 15.6-175.4-107.5 139.8 -4.9 -7.7 0.3 19 19 A F - 0 0 30 -9,-2.8 -9,-0.5 -2,-0.4 3,-0.0 -0.951 26.2-150.6-133.3 152.6 -7.6 -5.1 0.8 20 20 A K S S+ 0 0 187 -2,-0.3 -10,-0.2 -11,-0.2 2,-0.2 0.834 85.0 39.6 -87.9 -37.8 -11.4 -5.0 0.2 21 21 A S S > S- 0 0 62 1,-0.1 4,-0.9 -11,-0.1 5,-0.0 -0.586 74.6-130.0-108.1 171.6 -11.6 -1.3 -0.6 22 22 A K H > S+ 0 0 144 -2,-0.2 4,-3.1 2,-0.2 3,-0.4 0.948 101.2 58.1 -84.7 -60.8 -9.4 1.1 -2.5 23 23 A G H > S+ 0 0 54 1,-0.3 4,-2.2 2,-0.2 5,-0.2 0.825 108.8 50.8 -37.6 -42.3 -8.9 4.0 -0.1 24 24 A T H > S+ 0 0 78 1,-0.2 4,-1.6 2,-0.2 -1,-0.3 0.955 112.2 43.5 -64.0 -52.1 -7.5 1.5 2.3 25 25 A L H X S+ 0 0 13 -4,-0.9 4,-2.2 -3,-0.4 -2,-0.2 0.863 111.9 57.3 -61.9 -36.6 -5.0 0.0 -0.2 26 26 A K H >X S+ 0 0 130 -4,-3.1 4,-2.6 2,-0.2 3,-0.6 0.984 106.2 45.1 -58.0 -63.3 -4.1 3.5 -1.4 27 27 A S H 3X S+ 0 0 77 -4,-2.2 4,-0.8 1,-0.3 -1,-0.2 0.837 115.8 50.4 -50.5 -35.4 -3.0 4.9 2.0 28 28 A H H 3X S+ 0 0 19 -4,-1.6 4,-0.6 -5,-0.2 -1,-0.3 0.844 109.0 51.2 -72.7 -34.7 -1.1 1.7 2.5 29 29 A K H XX S+ 0 0 83 -4,-2.2 3,-1.9 -3,-0.6 4,-1.2 0.940 98.8 63.0 -67.8 -48.6 0.6 2.0 -1.0 30 30 A L H 3< S+ 0 0 105 -4,-2.6 3,-0.4 1,-0.3 -1,-0.2 0.839 96.3 62.1 -44.6 -38.2 1.8 5.6 -0.4 31 31 A L H 3< S+ 0 0 121 -4,-0.8 3,-0.5 1,-0.2 -1,-0.3 0.878 97.8 55.9 -57.5 -39.4 3.9 4.1 2.4 32 32 A H H << S+ 0 0 75 -3,-1.9 2,-1.5 -4,-0.6 3,-0.5 0.860 97.1 65.1 -61.7 -36.4 5.8 2.0 -0.1 33 33 A T S < S+ 0 0 93 -4,-1.2 -1,-0.3 -3,-0.4 -2,-0.1 -0.278 73.3 107.6 -84.0 51.2 6.6 5.2 -2.0 34 34 A A S S+ 0 0 80 -2,-1.5 -1,-0.2 -3,-0.5 -2,-0.1 0.922 76.5 40.3 -90.6 -61.7 8.8 6.5 0.8 35 35 A D 0 0 172 -3,-0.5 -2,-0.1 1,-0.2 -3,-0.1 0.903 360.0 360.0 -55.0 -44.4 12.4 6.1 -0.3 36 36 A G 0 0 99 -4,-0.3 -1,-0.2 0, 0.0 -2,-0.2 0.856 360.0 360.0 -84.2 360.0 11.4 7.2 -3.8