==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELT . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA,T.UMEHARA, . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3169.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 123 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 97.5 7.3 -21.8 -3.4 2 2 A S + 0 0 132 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.210 360.0 132.5 -47.3 114.3 5.2 -19.9 -0.9 3 3 A S + 0 0 115 1,-0.2 0, 0.0 13,-0.0 0, 0.0 -0.952 39.3 20.2-167.2 146.8 5.2 -16.3 -2.0 4 4 A G S S- 0 0 41 -2,-0.3 2,-0.6 1,-0.1 -1,-0.2 0.224 74.1 -97.4 73.3 158.8 2.8 -13.4 -2.7 5 5 A S - 0 0 91 11,-0.7 3,-0.2 3,-0.0 2,-0.2 -0.921 34.9-160.4-120.0 106.9 -0.7 -13.0 -1.3 6 6 A S + 0 0 126 -2,-0.6 2,-0.1 1,-0.1 12,-0.1 -0.515 53.7 73.2 -83.9 151.8 -3.5 -14.0 -3.6 7 7 A G + 0 0 71 1,-0.5 -1,-0.1 -2,-0.2 12,-0.1 -0.568 68.1 76.3 151.1 -82.1 -7.1 -12.7 -3.1 8 8 A K - 0 0 101 -3,-0.2 -1,-0.5 -2,-0.1 12,-0.2 -0.273 69.0-134.6 -63.5 148.3 -7.8 -9.1 -4.0 9 9 A P S S+ 0 0 96 0, 0.0 2,-0.5 0, 0.0 11,-0.1 0.926 87.2 75.4 -69.7 -47.0 -8.2 -8.3 -7.7 10 10 A Y E -A 19 0A 85 9,-1.2 9,-2.3 8,-0.0 2,-0.3 -0.568 67.6-176.4 -73.1 119.0 -6.0 -5.2 -7.6 11 11 A K E -A 18 0A 92 -2,-0.5 7,-0.2 7,-0.2 5,-0.1 -0.883 27.7-110.8-118.7 150.1 -2.4 -6.1 -7.4 12 12 A C - 0 0 13 5,-2.4 5,-0.1 -2,-0.3 6,-0.0 -0.618 13.5-144.5 -81.4 132.3 0.7 -4.0 -7.1 13 13 A P S S+ 0 0 102 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 0.587 100.1 37.6 -69.7 -9.9 3.0 -3.8 -10.2 14 14 A Q S S+ 0 0 134 1,-0.2 2,-0.1 3,-0.1 -2,-0.0 0.827 124.1 14.2-104.0 -66.6 6.0 -3.6 -7.8 15 15 A C S S- 0 0 50 2,-0.1 -3,-0.3 1,-0.0 -1,-0.2 -0.429 87.7 -92.3-104.6-178.8 5.3 -5.9 -4.7 16 16 A S S S+ 0 0 75 -2,-0.1 -11,-0.7 -5,-0.1 2,-0.5 -0.031 73.8 142.9 -84.8 32.7 2.8 -8.6 -4.0 17 17 A Y - 0 0 65 -13,-0.1 -5,-2.4 -5,-0.1 2,-0.4 -0.642 26.5-177.9 -79.5 122.4 0.5 -6.0 -2.5 18 18 A A E +A 11 0A 28 -2,-0.5 2,-0.3 -7,-0.2 -7,-0.2 -0.968 5.0 179.2-125.2 138.5 -3.2 -6.7 -3.3 19 19 A S E -A 10 0A 11 -9,-2.3 -9,-1.2 -2,-0.4 -12,-0.1 -0.973 32.6-138.1-137.4 151.1 -6.2 -4.6 -2.3 20 20 A A S S+ 0 0 54 -2,-0.3 2,-0.4 -12,-0.2 -1,-0.1 0.790 92.8 60.1 -76.0 -29.1 -10.0 -4.9 -2.9 21 21 A I S > S- 0 0 96 1,-0.2 4,-1.1 -11,-0.1 -1,-0.0 -0.847 72.0-147.7-105.1 137.4 -10.3 -1.2 -3.7 22 22 A K H >> S+ 0 0 111 -2,-0.4 4,-1.9 1,-0.2 3,-1.2 0.982 98.4 56.0 -63.1 -59.5 -8.4 0.6 -6.5 23 23 A A H 3> S+ 0 0 58 1,-0.3 4,-1.8 2,-0.2 5,-0.2 0.839 102.6 60.2 -41.0 -41.1 -8.0 3.9 -4.8 24 24 A N H 3> S+ 0 0 76 1,-0.2 4,-1.7 2,-0.2 -1,-0.3 0.925 105.4 45.9 -55.4 -48.1 -6.3 2.0 -2.0 25 25 A L H X S+ 0 0 29 -4,-1.7 3,-0.9 1,-0.2 4,-0.8 0.876 104.0 48.4 -55.4 -39.6 0.1 2.4 -1.9 29 29 A L H >X S+ 0 0 48 -4,-2.0 4,-2.3 -3,-0.3 3,-0.8 0.898 90.8 77.5 -68.6 -41.5 2.3 3.3 -4.9 30 30 A R H 3< S+ 0 0 169 -4,-1.4 -1,-0.2 1,-0.3 -2,-0.2 0.742 102.6 43.1 -40.0 -25.2 2.7 6.9 -3.8 31 31 A K H X< S+ 0 0 149 -3,-0.9 3,-1.1 -4,-0.6 -1,-0.3 0.811 107.2 57.5 -91.5 -36.5 5.2 5.3 -1.5 32 32 A H H << S+ 0 0 65 -4,-0.8 2,-0.5 -3,-0.8 -2,-0.2 0.900 104.3 53.3 -60.9 -42.3 6.8 2.9 -4.0 33 33 A T T 3< S+ 0 0 120 -4,-2.3 -1,-0.3 1,-0.0 2,-0.3 -0.144 107.8 64.3 -86.9 40.1 7.7 5.8 -6.3 34 34 A G < + 0 0 43 -3,-1.1 2,-0.3 -2,-0.5 -1,-0.0 -0.887 53.5 148.5-165.3 131.0 9.5 7.6 -3.4 35 35 A E 0 0 187 -2,-0.3 -3,-0.0 1,-0.1 -2,-0.0 -0.977 360.0 360.0-157.0 164.8 12.5 7.0 -1.2 36 36 A K 0 0 249 -2,-0.3 -1,-0.1 0, 0.0 0, 0.0 0.833 360.0 360.0 -98.0 360.0 15.3 8.8 0.7