==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELU . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA,T.UMEHARA, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3668.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 54.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 132 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -94.7 -19.6 -20.0 -8.0 2 2 A S + 0 0 130 2,-0.1 2,-0.3 0, 0.0 0, 0.0 -0.728 360.0 91.7-124.0 81.7 -19.0 -18.3 -11.4 3 3 A S S S- 0 0 104 -2,-0.4 2,-1.3 2,-0.0 0, 0.0 -0.870 78.5-104.3-171.2 134.6 -18.5 -14.6 -10.9 4 4 A G - 0 0 82 -2,-0.3 2,-0.7 1,-0.1 3,-0.1 -0.469 37.9-148.2 -66.5 94.0 -15.6 -12.2 -10.4 5 5 A S - 0 0 114 -2,-1.3 -1,-0.1 1,-0.1 -2,-0.0 -0.522 24.4-115.7 -68.5 107.3 -16.0 -11.5 -6.7 6 6 A S + 0 0 125 -2,-0.7 -1,-0.1 1,-0.0 2,-0.1 0.094 46.4 161.1 -38.2 153.7 -14.7 -7.9 -6.3 7 7 A G - 0 0 64 -3,-0.1 2,-0.1 2,-0.0 -1,-0.0 -0.328 26.6-147.9 175.5 94.8 -11.6 -7.5 -4.1 8 8 A I - 0 0 135 -2,-0.1 2,-0.5 12,-0.1 -2,-0.0 -0.405 11.0-158.0 -70.6 144.7 -9.2 -4.6 -4.1 9 9 A K + 0 0 178 -2,-0.1 2,-0.5 2,-0.0 11,-0.1 -0.918 13.5 175.7-130.4 106.7 -5.6 -5.3 -3.4 10 10 A Q + 0 0 82 -2,-0.5 9,-1.6 9,-0.4 2,-0.4 -0.946 1.6 176.0-115.0 124.1 -3.4 -2.5 -2.0 11 11 A H E -A 18 0A 99 -2,-0.5 2,-2.9 7,-0.2 7,-0.2 -0.989 35.2-127.6-130.8 127.0 0.3 -3.1 -1.0 12 12 A C E >>> -A 17 0A 2 5,-1.4 4,-2.4 -2,-0.4 3,-1.4 -0.386 27.1-174.1 -70.1 71.4 2.8 -0.5 0.1 13 13 A R T 345S+ 0 0 166 -2,-2.9 -1,-0.2 1,-0.3 5,-0.0 0.812 79.2 66.9 -34.8 -41.0 5.4 -1.5 -2.5 14 14 A F T 345S+ 0 0 129 1,-0.3 -1,-0.3 -3,-0.2 -2,-0.1 0.940 125.1 9.4 -47.9 -57.7 7.6 1.0 -0.7 15 15 A C T <45S- 0 0 48 -3,-1.4 -1,-0.3 2,-0.0 -2,-0.2 0.250 104.3-119.0-107.8 9.2 7.7 -1.1 2.5 16 16 A K T <5 + 0 0 147 -4,-2.4 -3,-0.2 1,-0.2 2,-0.2 0.903 64.9 147.5 53.2 45.1 6.0 -4.1 0.9 17 17 A K E < -A 12 0A 111 -5,-0.8 -5,-1.4 8,-0.0 2,-0.4 -0.519 42.6-130.2-104.3 173.9 3.2 -3.8 3.4 18 18 A K E -A 11 0A 171 -7,-0.2 2,-0.4 -2,-0.2 -7,-0.2 -0.991 17.0-174.6-130.6 134.5 -0.5 -4.6 3.2 19 19 A Y - 0 0 56 -9,-1.6 -9,-0.4 -2,-0.4 6,-0.1 -0.968 16.4-155.7-132.7 118.2 -3.5 -2.4 4.1 20 20 A S S S+ 0 0 106 -2,-0.4 2,-0.6 1,-0.2 -1,-0.2 0.966 88.8 45.8 -51.8 -62.6 -7.1 -3.5 4.0 21 21 A D S >> S- 0 0 101 1,-0.2 3,-1.9 2,-0.0 4,-1.0 -0.768 75.5-149.9 -89.9 117.1 -8.6 -0.0 3.6 22 22 A V H >> S+ 0 0 50 -2,-0.6 4,-1.8 1,-0.3 3,-1.0 0.903 94.3 70.4 -48.5 -47.8 -6.8 2.0 1.0 23 23 A K H 3> S+ 0 0 163 1,-0.3 4,-1.5 2,-0.2 -1,-0.3 0.819 100.8 48.3 -39.6 -37.8 -7.6 5.2 3.0 24 24 A N H <> S+ 0 0 80 -3,-1.9 4,-2.7 2,-0.2 -1,-0.3 0.871 103.9 59.8 -73.2 -38.3 -5.1 3.9 5.6 25 25 A L H S+ 0 0 28 -4,-2.2 5,-1.0 2,-0.2 -2,-0.2 0.990 113.3 47.2 -67.6 -62.7 2.7 6.7 3.3 30 30 A R H <5S+ 0 0 133 -4,-2.4 -1,-0.2 1,-0.2 -2,-0.2 0.673 120.0 45.9 -54.1 -15.3 2.3 10.5 3.8 31 31 A D H <5S+ 0 0 117 -4,-0.6 -1,-0.2 -5,-0.3 -2,-0.2 0.850 130.6 15.5 -94.5 -45.2 3.0 9.6 7.4 32 32 A A T <5S+ 0 0 62 -4,-3.0 -3,-0.2 -5,-0.1 -2,-0.1 0.904 142.1 15.9 -92.2 -74.3 6.0 7.3 7.0 33 33 A H T 5S+ 0 0 70 -5,-0.4 -3,-0.2 1,-0.0 -4,-0.1 0.999 70.8 178.7 -64.8 -69.2 7.4 7.6 3.5 34 34 A D < + 0 0 53 -5,-1.0 3,-0.3 2,-0.0 -4,-0.1 0.963 12.1 162.1 62.0 54.2 5.8 10.9 2.4 35 35 A P + 0 0 85 0, 0.0 -1,-0.0 0, 0.0 -5,-0.0 0.919 63.0 69.3 -69.7 -46.0 7.5 11.0 -1.0 36 36 A Q 0 0 161 1,-0.1 -2,-0.0 0, 0.0 -6,-0.0 0.822 360.0 360.0 -41.9 -37.0 5.2 13.5 -2.6 37 37 A D 0 0 151 -3,-0.3 -1,-0.1 -7,-0.0 0, 0.0 -0.690 360.0 360.0 -80.9 360.0 6.8 16.0 -0.2