==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 27-MAR-07 2ELX . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 406; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR N.TOCHIO,M.YONEYAMA,S.KOSHIBA,S.WATANABE,T.HARADA,T.UMEHARA, . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3130.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 22.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 139 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 163.6 -6.5 -17.1 -20.7 2 2 A S - 0 0 128 0, 0.0 2,-0.3 0, 0.0 0, 0.0 -0.852 360.0-150.2-114.9 150.3 -7.1 -18.3 -17.1 3 3 A S + 0 0 131 -2,-0.3 3,-0.1 1,-0.1 2,-0.0 -0.820 43.8 104.4-117.5 157.3 -8.8 -16.5 -14.2 4 4 A G + 0 0 59 1,-0.5 -1,-0.1 -2,-0.3 0, 0.0 -0.283 44.4 93.2 176.1 -80.9 -8.3 -16.7 -10.5 5 5 A S + 0 0 114 1,-0.2 -1,-0.5 -2,-0.0 3,-0.0 -0.127 39.6 167.7 -43.6 124.8 -6.4 -14.1 -8.5 6 6 A S + 0 0 110 -3,-0.1 -1,-0.2 2,-0.1 -2,-0.0 0.796 51.7 61.9-108.1 -55.5 -8.9 -11.6 -7.2 7 7 A G S S- 0 0 28 1,-0.1 2,-0.3 12,-0.0 11,-0.1 0.089 87.7 -99.7 -63.8-177.0 -7.1 -9.4 -4.7 8 8 A Y E -A 17 0A 121 9,-0.8 9,-2.8 11,-0.0 2,-0.4 -0.853 30.6-163.8-112.1 146.7 -4.1 -7.2 -5.4 9 9 A V E -A 16 0A 65 -2,-0.3 7,-0.3 7,-0.3 5,-0.1 -0.975 26.4-104.5-131.0 143.8 -0.4 -8.0 -4.7 10 10 A C - 0 0 2 5,-2.7 14,-0.0 -2,-0.4 6,-0.0 -0.200 16.3-144.6 -61.2 154.0 2.7 -5.8 -4.6 11 11 A A S S+ 0 0 90 3,-0.1 -1,-0.1 2,-0.1 -2,-0.0 0.537 96.3 33.7 -96.7 -10.2 5.1 -5.9 -7.5 12 12 A L S S+ 0 0 92 3,-0.1 -2,-0.0 0, 0.0 15,-0.0 0.808 132.8 22.4-106.6 -64.9 8.1 -5.4 -5.3 13 13 A C S S- 0 0 56 2,-0.1 -2,-0.1 1,-0.0 -3,-0.0 0.615 95.2-135.0 -80.5 -13.1 7.6 -7.1 -1.9 14 14 A L + 0 0 115 1,-0.2 2,-0.4 -5,-0.1 -3,-0.1 0.903 48.8 156.0 59.1 43.2 5.0 -9.3 -3.5 15 15 A K - 0 0 124 8,-0.1 -5,-2.7 1,-0.0 -1,-0.2 -0.862 40.0-126.8-105.5 135.0 2.6 -8.8 -0.6 16 16 A K E -A 9 0A 116 -2,-0.4 2,-0.3 -7,-0.3 -7,-0.3 -0.435 27.8-168.6 -77.0 151.4 -1.2 -9.2 -1.0 17 17 A F E -A 8 0A 36 -9,-2.8 -9,-0.8 -2,-0.1 3,-0.1 -0.844 32.8-117.8-134.8 171.1 -3.6 -6.4 0.1 18 18 A V S S+ 0 0 97 -2,-0.3 2,-0.3 1,-0.1 -1,-0.1 0.890 94.0 0.0 -76.8 -41.8 -7.3 -5.9 0.7 19 19 A S S > S- 0 0 55 1,-0.1 4,-0.9 -12,-0.1 -1,-0.1 -0.847 74.3-103.5-140.3 175.4 -7.7 -3.2 -2.0 20 20 A S H >> S+ 0 0 42 -2,-0.3 4,-2.8 2,-0.2 3,-1.3 0.983 116.7 48.3 -66.2 -59.7 -5.7 -1.4 -4.6 21 21 A I H 3> S+ 0 0 113 1,-0.3 4,-2.2 2,-0.2 5,-0.4 0.921 107.4 56.1 -46.0 -54.5 -5.3 1.9 -2.8 22 22 A R H 3> S+ 0 0 164 1,-0.3 4,-0.8 2,-0.2 -1,-0.3 0.818 113.9 42.2 -49.3 -33.1 -4.2 0.2 0.4 23 23 A L H X S+ 0 0 158 -4,-2.8 3,-1.3 1,-0.2 4,-0.6 0.976 110.6 41.4 -55.7 -61.7 -0.7 1.8 -3.7 25 25 A S H >X S+ 0 0 72 -4,-2.2 3,-1.9 1,-0.3 4,-1.5 0.868 106.1 66.2 -55.2 -38.6 0.1 3.9 -0.6 26 26 A H H 3X>S+ 0 0 17 -4,-0.8 4,-3.0 -5,-0.4 5,-0.8 0.845 99.9 50.9 -52.3 -36.0 2.0 0.9 0.9 27 27 A I H <<5S+ 0 0 34 -3,-1.3 6,-0.9 -4,-1.3 -1,-0.3 0.645 108.7 52.5 -77.0 -15.1 4.5 1.3 -1.9 28 28 A R H <<5S+ 0 0 137 -3,-1.9 -2,-0.2 -4,-0.6 6,-0.2 0.672 121.8 29.1 -91.9 -21.2 4.8 5.0 -1.1 29 29 A E H <5S+ 0 0 153 -4,-1.5 -2,-0.2 -3,-0.1 -3,-0.2 0.768 133.6 30.6-105.1 -40.6 5.6 4.3 2.6 30 30 A V T <5S+ 0 0 86 -4,-3.0 -3,-0.2 -5,-0.3 -2,-0.1 0.867 143.1 16.1 -86.4 -42.0 7.2 0.9 2.5 31 31 A H S + 0 0 32 -6,-0.3 3,-0.5 -7,-0.2 -4,-0.3 0.947 19.7 178.2 44.9 71.7 8.5 5.0 -1.2 33 33 A A T 3 + 0 0 66 -6,-0.9 -1,-0.2 1,-0.2 -5,-0.1 0.087 60.5 90.3 -89.6 23.5 8.3 5.3 -5.0 34 34 A A T 3 0 0 74 -6,-0.2 -1,-0.2 1,-0.2 -2,-0.1 0.133 360.0 360.0-103.3 18.1 7.9 9.0 -4.8 35 35 A Q < 0 0 225 -3,-0.5 -1,-0.2 0, 0.0 -2,-0.1 0.528 360.0 360.0 -56.4 360.0 11.6 9.7 -5.0