==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 20-MAR-00 1EMX . COMPND 2 MOLECULE: HETEROPODATOXIN 2; . SOURCE 2 ORGANISM_SCIENTIFIC: HETEROPODA VENATORIA; . AUTHOR C.BERNARD,C.LEGROS,G.FERRAT,U.BISHOFF,A.MARQUARDT,O.PONGS, . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2591.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 46.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 207 0, 0.0 16,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -53.8 4.1 -8.5 10.5 2 2 A D + 0 0 133 14,-0.0 15,-0.2 15,-0.0 12,-0.0 0.877 360.0 163.1 -65.7 -38.7 0.8 -8.4 8.5 3 3 A a - 0 0 36 13,-0.1 12,-0.2 2,-0.0 11,-0.2 0.242 47.3 -22.7 42.0-174.9 1.2 -4.6 7.9 4 4 A G - 0 0 2 10,-1.9 13,-0.4 9,-0.2 2,-0.2 0.071 66.9-133.1 -54.0 170.7 -0.8 -2.9 5.2 5 5 A K > - 0 0 122 3,-0.3 3,-1.2 11,-0.1 2,-0.4 -0.662 37.4 -65.1-121.2 177.0 -2.3 -4.6 2.2 6 6 A L T 3 S- 0 0 72 1,-0.3 21,-0.3 -2,-0.2 3,-0.1 -0.502 121.5 -7.6 -67.9 120.2 -2.5 -4.1 -1.5 7 7 A F T 3 S+ 0 0 97 19,-0.9 2,-2.8 -2,-0.4 -1,-0.3 0.439 92.5 143.8 73.4 -1.8 -4.5 -0.9 -2.3 8 8 A S X - 0 0 32 -3,-1.2 3,-0.6 18,-0.3 -3,-0.3 -0.387 63.7-110.7 -71.1 71.7 -5.3 -0.8 1.4 9 9 A G T 3 - 0 0 32 -2,-2.8 2,-0.3 1,-0.2 -2,-0.1 0.148 50.9 -64.0 33.5-147.9 -5.1 3.0 1.6 10 10 A b T 3 - 0 0 57 14,-0.1 -1,-0.2 -3,-0.1 5,-0.1 -0.685 58.3-172.8-134.9 80.1 -2.2 4.4 3.6 11 11 A D < - 0 0 85 -3,-0.6 -7,-0.1 -2,-0.3 -3,-0.0 -0.250 24.6-127.2 -70.1 160.1 -2.4 3.5 7.3 12 12 A T S > S+ 0 0 140 2,-0.1 3,-1.2 3,-0.1 -1,-0.1 0.989 100.4 13.6 -70.0 -79.5 -0.0 4.9 9.9 13 13 A N T 3 S+ 0 0 164 1,-0.3 -9,-0.2 -10,-0.1 -1,-0.1 0.943 129.9 53.2 -64.1 -50.1 1.4 1.9 11.7 14 14 A A T 3 S+ 0 0 36 -11,-0.2 2,-2.6 1,-0.1 -10,-1.9 0.260 73.9 162.9 -70.8 14.3 0.3 -0.6 9.1 15 15 A D < - 0 0 91 -3,-1.2 -1,-0.1 -12,-0.2 -3,-0.1 -0.002 61.4 -97.2 -39.2 66.9 2.0 1.6 6.5 16 16 A c - 0 0 8 -2,-2.6 3,-0.2 -8,-0.2 -1,-0.2 0.615 48.1 -94.3 7.0 116.3 1.9 -1.3 4.1 17 17 A a > - 0 0 44 -13,-0.4 3,-0.8 -15,-0.2 2,-0.3 0.170 60.0 -67.2 -39.7 162.1 5.2 -3.2 4.1 18 18 A E T 3 S+ 0 0 169 1,-0.2 -1,-0.2 0, 0.0 3,-0.1 -0.408 109.4 69.7 -62.2 120.8 7.8 -2.3 1.5 19 19 A G T 3 S+ 0 0 53 1,-0.8 10,-0.8 -2,-0.3 -1,-0.2 -0.117 88.1 49.3 168.2 -53.5 6.6 -3.3 -2.0 20 20 A Y B < S-A 28 0A 58 -3,-0.8 -1,-0.8 8,-0.2 8,-0.3 -0.412 80.5-105.9-101.8 178.3 3.7 -1.1 -3.1 21 21 A V - 0 0 31 6,-3.1 -14,-0.2 7,-0.3 -1,-0.1 -0.329 17.0-122.6 -98.1-176.9 3.4 2.7 -3.0 22 22 A b + 0 0 76 4,-0.1 4,-0.2 -2,-0.1 -12,-0.1 -0.039 68.2 121.4-117.5 30.3 1.4 5.1 -0.8 23 23 A R S S- 0 0 155 2,-0.7 -3,-0.0 4,-0.2 -16,-0.0 0.290 94.2 -45.3 -70.4-154.5 -0.6 6.8 -3.6 24 24 A L S S+ 0 0 123 2,-0.1 2,-0.3 1,-0.0 -15,-0.2 0.815 137.2 17.1 -47.4 -29.6 -4.5 6.7 -3.7 25 25 A W S S- 0 0 116 -17,-0.1 2,-1.2 3,-0.1 -2,-0.7 -0.928 86.1-107.5-138.9 164.0 -4.0 3.0 -2.8 26 26 A c + 0 0 2 -2,-0.3 -19,-0.9 -4,-0.2 -18,-0.3 -0.265 68.3 153.9 -86.2 47.1 -1.2 0.8 -1.4 27 27 A K - 0 0 17 -2,-1.2 -6,-3.1 -21,-0.3 3,-0.2 -0.277 51.8 -73.8 -73.3 163.6 -0.9 -0.6 -5.0 28 28 A L B S-A 20 0A 99 -8,-0.3 2,-2.6 1,-0.2 -7,-0.3 0.028 74.1 -66.2 -51.5 163.6 2.2 -2.2 -6.5 29 29 A D 0 0 128 -10,-0.8 -1,-0.2 1,-0.2 -9,-0.1 -0.285 360.0 360.0 -56.9 76.3 5.1 0.1 -7.5 30 30 A W 0 0 206 -2,-2.6 -1,-0.2 -3,-0.2 -2,-0.1 0.997 360.0 360.0 -70.1 360.0 3.1 1.7 -10.3