==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 28-MAR-07 2EMV . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 268; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,T.TOMIZAWA,H.ABE,K.SAITO,H.LI,M.SATO,S.KOSHIBA, . 44 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4224.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 43.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 6.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 6.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 18.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 123 0, 0.0 3,-0.3 0, 0.0 4,-0.1 0.000 360.0 360.0 360.0 74.7 20.3 10.9 -8.1 2 2 A S > - 0 0 107 1,-0.2 3,-1.6 2,-0.1 2,-0.1 0.087 360.0 -67.2 -39.1 154.2 22.8 12.2 -5.7 3 3 A S T 3 S+ 0 0 122 1,-0.2 -1,-0.2 2,-0.1 3,-0.1 -0.270 123.0 47.3 -51.6 116.9 26.2 10.5 -5.7 4 4 A G T 3 S- 0 0 56 -3,-0.3 -1,-0.2 -2,-0.1 3,-0.2 -0.138 71.6-153.2 143.9 -43.5 25.6 7.0 -4.5 5 5 A S < + 0 0 115 -3,-1.6 2,-1.7 1,-0.2 -2,-0.1 0.858 25.6 178.1 39.9 45.3 22.5 5.7 -6.3 6 6 A S + 0 0 124 -3,-0.1 2,-0.4 2,-0.0 -1,-0.2 -0.578 21.7 136.2 -80.4 84.3 21.9 3.4 -3.3 7 7 A G + 0 0 67 -2,-1.7 2,-0.5 -3,-0.2 -3,-0.0 -0.922 21.5 168.5-138.6 112.6 18.7 1.7 -4.5 8 8 A T - 0 0 116 -2,-0.4 2,-2.0 0, 0.0 3,-0.3 -0.975 29.4-143.1-127.4 120.7 17.9 -2.0 -4.1 9 9 A R + 0 0 203 -2,-0.5 -2,-0.0 1,-0.2 5,-0.0 -0.516 38.7 154.6 -80.4 75.6 14.5 -3.5 -4.7 10 10 A E + 0 0 157 -2,-2.0 -1,-0.2 2,-0.0 11,-0.0 0.875 59.2 62.8 -69.9 -38.5 14.7 -6.1 -1.9 11 11 A K S S- 0 0 77 -3,-0.3 12,-0.2 1,-0.1 13,-0.0 -0.704 72.2-148.6 -92.4 140.2 10.9 -6.2 -1.6 12 12 A P S S+ 0 0 95 0, 0.0 2,-0.4 0, 0.0 11,-0.2 0.946 80.9 71.7 -69.8 -51.0 8.7 -7.4 -4.4 13 13 A Y E -A 22 0A 83 9,-1.6 9,-2.3 10,-0.0 2,-0.4 -0.544 67.5-177.1 -72.5 125.5 5.6 -5.2 -3.6 14 14 A E E -A 21 0A 55 -2,-0.4 2,-0.6 7,-0.2 7,-0.3 -0.953 30.1-112.2-127.1 145.8 6.3 -1.6 -4.4 15 15 A C - 0 0 3 5,-1.3 4,-0.3 -2,-0.4 5,-0.1 -0.645 15.2-156.9 -78.8 118.5 4.1 1.5 -3.8 16 16 A S S S+ 0 0 114 -2,-0.6 -1,-0.2 1,-0.2 16,-0.0 0.504 91.9 57.9 -71.7 -2.6 3.0 3.0 -7.2 17 17 A E S S- 0 0 109 3,-0.0 -1,-0.2 0, 0.0 15,-0.0 0.914 133.7 -8.4 -90.7 -57.9 2.6 6.3 -5.3 18 18 A C S S- 0 0 84 0, 0.0 -2,-0.1 0, 0.0 -4,-0.0 0.733 96.4-106.2-109.7 -39.3 6.0 6.9 -3.8 19 19 A G + 0 0 45 -4,-0.3 -3,-0.1 2,-0.0 0, 0.0 0.462 59.4 158.9 121.8 8.3 7.9 3.7 -4.6 20 20 A K - 0 0 109 -6,-0.2 -5,-1.3 1,-0.1 2,-0.3 0.200 31.3-127.4 -49.5-179.3 8.0 2.1 -1.1 21 21 A A E +A 14 0A 38 -7,-0.3 2,-0.3 7,-0.0 -7,-0.2 -0.961 23.5 179.7-138.0 154.9 8.6 -1.6 -0.7 22 22 A F E -A 13 0A 22 -9,-2.3 -9,-1.6 -2,-0.3 3,-0.1 -0.993 30.1-139.8-153.7 152.9 6.9 -4.5 1.0 23 23 A I S S+ 0 0 104 -2,-0.3 2,-0.4 1,-0.2 -1,-0.1 0.864 93.4 29.7 -81.0 -39.1 7.2 -8.3 1.5 24 24 A R S >> S- 0 0 167 1,-0.1 4,-1.5 -11,-0.1 3,-1.3 -0.962 77.3-126.0-126.0 141.8 3.5 -9.1 1.3 25 25 A N H >> S+ 0 0 69 -2,-0.4 4,-2.3 1,-0.3 3,-0.6 0.930 110.3 60.7 -45.6 -57.7 0.8 -7.3 -0.7 26 26 A S H 3> S+ 0 0 90 1,-0.3 4,-1.7 2,-0.2 -1,-0.3 0.830 104.6 52.1 -39.9 -40.0 -1.4 -6.9 2.5 27 27 A Q H <> S+ 0 0 111 -3,-1.3 4,-1.0 2,-0.2 -1,-0.3 0.936 110.2 46.3 -65.0 -48.0 1.5 -4.9 3.9 28 28 A L H XX S+ 0 0 12 -4,-1.5 3,-1.5 -3,-0.6 4,-1.4 0.964 107.7 56.0 -59.3 -55.5 1.7 -2.6 0.8 29 29 A I H >X S+ 0 0 82 -4,-2.3 4,-1.8 1,-0.3 3,-1.3 0.898 101.9 57.4 -42.8 -52.2 -2.0 -2.0 0.7 30 30 A V H 3< S+ 0 0 72 -4,-1.7 4,-0.5 1,-0.3 -1,-0.3 0.849 108.4 47.1 -49.4 -37.7 -2.0 -0.7 4.3 31 31 A H H