==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 28-MAR-07 2EN0 . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 268; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,T.TOMIZAWA,H.ABE,K.SAITO,H.LI,M.SATO,S.KOSHIBA, . 42 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3657.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 45.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 9.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 19.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 132 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -50.4 -8.6 -15.7 5.4 2 2 A S - 0 0 89 1,-0.1 3,-0.2 3,-0.0 0, 0.0 -0.275 360.0-125.3 -58.0 138.0 -9.4 -12.2 4.3 3 3 A S S S- 0 0 140 1,-0.2 -1,-0.1 2,-0.0 0, 0.0 0.871 87.5 -34.4 -52.1 -39.8 -6.7 -9.7 5.0 4 4 A G + 0 0 39 3,-0.0 -1,-0.2 1,-0.0 2,-0.1 -0.115 65.2 163.7 173.3 78.3 -9.3 -7.6 6.8 5 5 A S + 0 0 108 -3,-0.2 2,-0.3 1,-0.1 -3,-0.0 -0.229 63.9 76.1 -98.2 43.2 -12.9 -7.3 5.6 6 6 A S + 0 0 114 -2,-0.1 2,-0.1 1,-0.1 -1,-0.1 -0.853 69.6 53.0-156.9 115.6 -14.1 -5.9 8.9 7 7 A G S S- 0 0 47 -2,-0.3 2,-0.5 2,-0.0 -1,-0.1 -0.220 78.9 -85.6 131.2 138.6 -13.8 -2.4 10.2 8 8 A Q - 0 0 172 -2,-0.1 -2,-0.0 13,-0.1 0, 0.0 -0.586 41.4-178.7 -74.6 121.0 -14.4 1.2 9.1 9 9 A K + 0 0 69 -2,-0.5 12,-0.2 1,-0.1 13,-0.1 -0.823 13.6 167.5-126.0 92.6 -11.5 2.6 7.1 10 10 A P + 0 0 94 0, 0.0 2,-1.3 0, 0.0 -1,-0.1 0.867 62.0 82.8 -69.8 -38.1 -12.0 6.2 6.0 11 11 A Y E +A 20 0A 86 9,-0.8 9,-2.6 2,-0.0 2,-0.4 -0.561 65.3 176.2 -73.4 96.0 -8.4 6.6 4.9 12 12 A V E -A 19 0A 66 -2,-1.3 2,-0.4 7,-0.3 7,-0.3 -0.848 31.1-119.2-106.5 139.5 -8.4 5.1 1.4 13 13 A C - 0 0 2 5,-2.4 4,-0.1 -2,-0.4 6,-0.0 -0.620 13.5-161.4 -78.5 126.0 -5.4 5.0 -0.9 14 14 A N S S+ 0 0 153 -2,-0.4 -1,-0.1 1,-0.2 -2,-0.0 0.462 88.9 59.8 -84.0 -1.7 -6.0 6.9 -4.2 15 15 A E S S- 0 0 105 3,-0.1 -1,-0.2 0, 0.0 -2,-0.0 0.871 133.6 -8.1 -91.1 -46.0 -3.1 5.0 -5.7 16 16 A C S S- 0 0 78 2,-0.1 -2,-0.1 0, 0.0 -4,-0.0 0.667 96.1-106.7-119.8 -40.6 -4.3 1.4 -5.3 17 17 A G + 0 0 50 1,-0.2 2,-0.4 -4,-0.1 -3,-0.1 0.654 58.4 156.3 115.0 27.5 -7.4 1.7 -3.2 18 18 A K - 0 0 115 8,-0.1 -5,-2.4 -6,-0.0 2,-0.3 -0.723 30.0-146.1 -88.7 130.3 -6.2 0.4 0.2 19 19 A A E -A 12 0A 35 -2,-0.4 2,-0.4 -7,-0.3 -7,-0.3 -0.746 10.8-167.0 -97.4 142.7 -8.2 1.5 3.2 20 20 A F E -A 11 0A 27 -9,-2.6 -9,-0.8 -2,-0.3 6,-0.2 -0.946 22.1-146.2-133.6 112.9 -6.6 2.0 6.6 21 21 A G S S+ 0 0 44 -2,-0.4 2,-0.3 -12,-0.2 -1,-0.1 0.699 91.1 55.4 -47.1 -18.8 -8.7 2.4 9.8 22 22 A L S > S- 0 0 110 1,-0.2 4,-0.7 -11,-0.1 -2,-0.1 -0.829 78.5-136.6-117.8 157.0 -5.9 4.8 10.8 23 23 A K H >> S+ 0 0 125 -2,-0.3 3,-1.9 2,-0.2 4,-1.8 0.990 104.4 45.6 -72.7 -65.4 -4.4 7.9 9.2 24 24 A S H 3> S+ 0 0 75 1,-0.3 4,-2.5 2,-0.2 5,-0.3 0.849 104.7 66.7 -46.5 -38.9 -0.7 7.4 9.7 25 25 A Q H 3> S+ 0 0 101 1,-0.2 4,-1.1 2,-0.2 -1,-0.3 0.876 106.3 40.4 -51.4 -41.1 -1.3 3.8 8.5 26 26 A L H < S+ 0 0 29 -4,-1.1 3,-3.0 -5,-0.3 4,-0.4 0.959 101.2 60.1 -68.9 -53.1 1.6 2.9 2.8 30 30 A E H >X S+ 0 0 54 -4,-3.3 4,-2.1 1,-0.3 3,-1.7 0.737 88.8 78.9 -47.6 -22.8 1.3 5.7 0.2 31 31 A R H 3X S+ 0 0 151 -4,-0.6 4,-2.0 1,-0.3 -1,-0.3 0.848 78.1 68.5 -55.9 -35.6 5.1 5.7 0.5 32 32 A I H <4 S+ 0 0 85 -3,-3.0 -1,-0.3 -4,-0.3 4,-0.2 0.816 109.1 36.2 -53.9 -31.7 5.2 2.7 -1.7 33 33 A H H <4 S+ 0 0 77 -3,-1.7 3,-0.2 -4,-0.4 -2,-0.2 0.864 105.7 66.4 -88.7 -42.9 4.0 4.9 -4.5 34 34 A T H < S- 0 0 110 -4,-2.1 -2,-0.2 1,-0.2 -3,-0.1 0.863 129.2 -40.5 -46.2 -41.8 5.9 8.1 -3.5 35 35 A G < - 0 0 48 -4,-2.0 2,-0.7 4,-0.0 -1,-0.2 -0.450 50.2-155.7 167.7 115.2 9.1 6.3 -4.3 36 36 A E S S- 0 0 122 2,-0.6 -4,-0.1 -3,-0.2 -5,-0.0 -0.871 77.1 -52.7-106.4 104.6 10.4 2.8 -3.7 37 37 A S S S- 0 0 112 -2,-0.7 -1,-0.1 2,-0.0 -2,-0.0 0.811 120.5 -39.1 34.4 40.8 14.2 2.6 -3.7 38 38 A G S S- 0 0 38 0, 0.0 -2,-0.6 0, 0.0 2,-0.5 -0.355 103.7 -30.0 104.2 173.6 14.0 4.4 -7.0 39 39 A P - 0 0 111 0, 0.0 -2,-0.0 0, 0.0 -4,-0.0 -0.532 52.7-136.7 -69.7 114.1 11.8 4.2 -10.1 40 40 A S S S+ 0 0 116 -2,-0.5 2,-0.8 1,-0.1 -5,-0.0 0.848 90.4 83.0 -34.7 -50.3 10.5 0.7 -10.5 41 41 A S 0 0 111 1,-0.1 -1,-0.1 -3,-0.0 0, 0.0 -0.458 360.0 360.0 -64.0 103.0 11.2 1.0 -14.2 42 42 A G 0 0 123 -2,-0.8 -1,-0.1 -4,-0.1 0, 0.0 0.069 360.0 360.0 160.5 360.0 14.9 0.2 -14.4