==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 28-MAR-07 2EN6 . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 268; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,T.TOMIZAWA,H.ABE,K.SAITO,H.LI,M.SATO,S.KOSHIBA, . 46 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4191.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 47.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 8.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 13.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 21.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 118 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-104.6 -13.6 -21.5 -21.7 2 2 A S + 0 0 112 1,-0.1 4,-0.1 3,-0.0 0, 0.0 0.922 360.0 176.7 -63.1 -45.8 -11.8 -19.2 -19.3 3 3 A S + 0 0 119 2,-0.1 -1,-0.1 0, 0.0 2,-0.1 0.845 69.9 28.0 40.4 42.0 -11.9 -16.3 -21.7 4 4 A G S S- 0 0 47 2,-0.0 2,-1.4 0, 0.0 0, 0.0 -0.086 80.2-123.2 140.4 118.7 -10.3 -14.2 -18.9 5 5 A S + 0 0 129 -2,-0.1 2,-0.5 1,-0.0 -2,-0.1 -0.659 50.2 150.5 -85.3 90.2 -8.1 -15.0 -16.0 6 6 A S - 0 0 111 -2,-1.4 -2,-0.0 1,-0.1 -1,-0.0 -0.951 23.9-168.5-127.5 112.8 -10.1 -13.6 -13.1 7 7 A G - 0 0 80 -2,-0.5 -1,-0.1 1,-0.0 0, 0.0 0.640 57.2 -57.3 -67.3-130.1 -9.8 -15.1 -9.6 8 8 A S - 0 0 118 3,-0.0 -2,-0.0 0, 0.0 -1,-0.0 0.858 69.8-115.1 -86.5 -40.7 -12.2 -14.3 -6.8 9 9 A G S S+ 0 0 64 2,-0.0 -3,-0.0 0, 0.0 14,-0.0 0.788 76.0 120.2 106.6 42.7 -11.7 -10.6 -6.8 10 10 A E S S+ 0 0 126 1,-0.1 3,-0.1 3,-0.0 0, 0.0 0.830 87.3 13.6-100.3 -47.5 -10.2 -9.8 -3.4 11 11 A K + 0 0 103 1,-0.1 12,-0.2 10,-0.0 11,-0.1 -0.545 65.7 156.2-131.8 67.6 -6.8 -8.2 -4.3 12 12 A P + 0 0 91 0, 0.0 2,-0.3 0, 0.0 11,-0.1 0.513 62.0 76.3 -69.7 -3.7 -7.0 -7.4 -8.0 13 13 A Y E -A 22 0A 88 9,-1.4 9,-1.4 -3,-0.1 2,-0.3 -0.782 59.6-177.9-110.1 154.0 -4.3 -4.8 -7.3 14 14 A G E -A 21 0A 38 -2,-0.3 2,-1.2 7,-0.2 7,-0.3 -0.982 29.7-137.6-154.1 139.3 -0.6 -5.2 -6.8 15 15 A C E >>> +A 20 0A 0 5,-2.3 4,-3.0 -2,-0.3 3,-2.9 -0.520 23.4 179.2 -94.6 66.5 2.4 -3.0 -6.0 16 16 A N T 345S+ 0 0 144 -2,-1.2 -1,-0.2 1,-0.3 5,-0.0 0.797 73.3 77.9 -34.5 -38.0 4.9 -4.7 -8.4 17 17 A E T 345S+ 0 0 137 1,-0.2 -1,-0.3 -3,-0.2 -2,-0.0 0.879 122.9 1.1 -40.8 -49.4 7.3 -2.1 -7.0 18 18 A C T <45S- 0 0 59 -3,-2.9 -2,-0.2 2,-0.1 -1,-0.2 0.710 106.7-106.7-110.9 -36.3 7.7 -4.2 -3.9 19 19 A G T <5S+ 0 0 61 -4,-3.0 -3,-0.2 1,-0.2 2,-0.1 0.662 70.2 134.0 112.6 27.1 5.5 -7.2 -4.7 20 20 A K E < -A 15 0A 120 -5,-0.7 -5,-2.3 8,-0.0 2,-0.3 -0.463 42.4-135.6-100.4 174.7 2.5 -6.6 -2.4 21 21 A T E -A 14 0A 85 -7,-0.3 2,-0.3 -2,-0.1 -7,-0.2 -0.953 13.6-168.1-133.2 152.3 -1.2 -6.7 -3.0 22 22 A F E -A 13 0A 28 -9,-1.4 -9,-1.4 -2,-0.3 3,-0.1 -0.968 28.4-131.9-139.3 154.1 -4.2 -4.5 -2.1 23 23 A S S S+ 0 0 74 -2,-0.3 2,-0.3 -12,-0.2 -1,-0.1 0.882 94.8 15.3 -71.0 -39.6 -8.0 -4.9 -2.1 24 24 A Q S >> S- 0 0 90 1,-0.1 4,-1.6 -13,-0.1 3,-0.8 -0.961 70.1-125.9-136.7 153.6 -8.4 -1.5 -3.8 25 25 A K H 3> S+ 0 0 132 -2,-0.3 4,-2.8 1,-0.2 5,-0.4 0.949 104.7 70.0 -61.3 -51.3 -6.2 1.0 -5.7 26 26 A S H 3> S+ 0 0 84 1,-0.3 4,-0.8 2,-0.2 -1,-0.2 0.793 108.2 40.4 -35.9 -36.0 -7.1 3.9 -3.5 27 27 A I H <> S+ 0 0 79 -3,-0.8 4,-1.6 2,-0.2 -1,-0.3 0.889 117.0 46.9 -82.7 -43.9 -5.1 2.0 -0.9 28 28 A L H X S+ 0 0 17 -4,-1.6 4,-2.2 2,-0.2 3,-0.3 0.963 105.0 59.5 -62.5 -54.2 -2.3 0.9 -3.1 29 29 A S H >X S+ 0 0 65 -4,-2.8 4,-1.3 1,-0.3 3,-0.5 0.892 107.9 46.3 -39.9 -54.8 -1.8 4.3 -4.8 30 30 A A H 3X S+ 0 0 60 -4,-0.8 4,-0.9 -5,-0.4 3,-0.5 0.900 109.6 54.1 -57.5 -43.2 -1.0 5.8 -1.4 31 31 A H H 3X S+ 0 0 49 -4,-1.6 4,-0.6 -3,-0.3 -1,-0.3 0.802 108.7 50.1 -61.9 -29.3 1.3 2.9 -0.6 32 32 A Q H