==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 21-MAR-00 1EO0 . COMPND 2 MOLECULE: TRANSCRIPTION ELONGATION FACTOR S-II; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR V.BOOTH,C.KOTH,A.M.EDWARDS,C.H.ARROWSMITH,NORTHEAST . 77 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5272.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 66 85.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 15.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 47 61.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 96 0, 0.0 2,-0.8 0, 0.0 36,-0.1 0.000 360.0 360.0 360.0 140.0 -8.0 7.3 -3.2 2 2 A D >> - 0 0 107 34,-0.4 4,-2.6 1,-0.2 3,-0.6 -0.818 360.0-161.8 -96.4 106.1 -6.3 10.3 -1.6 3 3 A S H 3> S+ 0 0 66 -2,-0.8 4,-4.2 1,-0.3 5,-0.4 0.852 92.5 61.5 -51.8 -35.4 -2.8 10.7 -3.1 4 4 A K H 3> S+ 0 0 172 1,-0.2 4,-1.6 2,-0.2 -1,-0.3 0.935 108.7 39.6 -57.2 -48.7 -2.1 12.8 -0.0 5 5 A E H <> S+ 0 0 37 -3,-0.6 4,-1.8 2,-0.2 -2,-0.2 0.884 121.5 44.8 -69.4 -38.8 -2.7 9.9 2.3 6 6 A V H X S+ 0 0 0 -4,-2.6 4,-2.4 2,-0.2 -2,-0.2 0.954 111.4 49.1 -71.0 -53.9 -1.0 7.5 0.0 7 7 A L H X S+ 0 0 94 -4,-4.2 4,-1.2 2,-0.2 -3,-0.2 0.887 111.2 52.8 -56.5 -36.3 2.1 9.6 -0.8 8 8 A V H >X S+ 0 0 87 -4,-1.6 4,-1.4 -5,-0.4 3,-1.1 0.959 106.9 51.3 -60.5 -48.1 2.5 10.2 2.9 9 9 A H H 3X S+ 0 0 33 -4,-1.8 4,-3.1 1,-0.3 -2,-0.2 0.865 103.8 58.8 -55.9 -35.0 2.3 6.4 3.3 10 10 A V H 3X S+ 0 0 13 -4,-2.4 4,-4.1 2,-0.2 -1,-0.3 0.830 96.4 62.3 -62.6 -32.5 5.0 6.3 0.7 11 11 A K H S+ 0 0 107 -2,-0.5 4,-1.3 3,-0.1 -1,-0.2 0.971 76.3 28.6 -74.4 -61.9 13.3 2.4 -4.3 21 21 A A H >>S+ 0 0 54 3,-0.2 4,-4.1 2,-0.2 5,-0.5 0.898 113.7 56.6 -71.5 -48.5 11.5 2.3 -7.7 22 22 A A H >5S+ 0 0 35 1,-0.2 4,-3.9 2,-0.2 5,-0.2 0.973 118.2 32.8 -53.5 -59.5 9.4 -0.8 -7.6 23 23 A V H >5S+ 0 0 2 -4,-0.2 4,-3.8 1,-0.2 5,-0.4 0.875 119.0 56.8 -63.8 -36.3 7.4 0.1 -4.5 24 24 A L H X5S+ 0 0 71 -4,-1.3 4,-1.8 2,-0.2 -2,-0.2 0.955 119.1 29.2 -59.0 -54.0 7.7 3.8 -5.5 25 25 A E H X5S+ 0 0 133 -4,-4.1 4,-2.4 2,-0.2 5,-0.3 0.836 121.1 55.7 -76.1 -33.9 6.1 3.2 -8.9 26 26 A I H X< S+ 0 0 126 -4,-1.8 3,-1.1 -5,-0.4 4,-0.3 0.965 115.5 36.1 -54.9 -56.4 2.0 5.4 -7.1 29 29 A V H >X S+ 0 0 93 -4,-2.4 3,-2.4 1,-0.3 4,-0.6 0.854 106.2 71.6 -64.8 -33.0 0.0 3.4 -9.6 30 30 A L H 3< S+ 0 0 5 -4,-2.3 -1,-0.3 -5,-0.3 3,-0.3 0.830 79.1 78.6 -49.4 -31.8 -1.5 1.6 -6.7 31 31 A D T X< S+ 0 0 30 -4,-1.2 3,-1.0 -3,-1.1 -1,-0.3 0.806 85.6 60.0 -50.2 -35.1 -3.3 4.8 -6.0 32 32 A K T <4 S+ 0 0 157 -3,-2.4 -1,-0.2 1,-0.3 -2,-0.2 0.984 125.8 15.1 -57.2 -61.9 -5.7 3.9 -8.7 33 33 A E T 3< S+ 0 0 58 -4,-0.6 -1,-0.3 -3,-0.3 -2,-0.2 -0.264 103.0 147.2-105.6 42.3 -6.9 0.7 -7.0 34 34 A F < - 0 0 0 -3,-1.0 -3,-0.1 -5,-0.1 6,-0.1 -0.251 58.7-112.5 -82.7 169.4 -5.4 1.6 -3.7 35 35 A V S S+ 0 0 0 1,-0.1 2,-1.3 8,-0.1 9,-0.6 0.308 78.5 107.3 -82.4 2.6 -6.6 0.8 -0.1 36 36 A P + 0 0 12 0, 0.0 -34,-0.4 0, 0.0 2,-0.2 -0.583 44.5 120.5 -92.6 85.1 -7.6 4.4 1.1 37 37 A T S > S- 0 0 40 -2,-1.3 4,-2.0 -36,-0.1 5,-0.2 -0.577 79.6 -79.8-124.2-171.2 -11.4 4.5 1.2 38 38 A E T 4 S+ 0 0 194 -2,-0.2 4,-0.4 2,-0.2 -1,-0.1 0.980 131.3 11.7 -55.5 -60.1 -14.0 5.1 4.0 39 39 A K T >> S+ 0 0 125 1,-0.2 3,-0.9 2,-0.1 4,-0.8 0.888 129.4 57.6 -80.6 -45.6 -13.8 1.6 5.4 40 40 A L H 3> S+ 0 0 0 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.735 86.8 80.0 -59.1 -26.8 -10.7 0.6 3.4 41 41 A L H 3X S+ 0 0 79 -4,-2.0 4,-1.2 2,-0.3 3,-0.3 0.939 94.0 47.4 -49.7 -49.3 -8.7 3.5 4.9 42 42 A R H X> S+ 0 0 164 -3,-0.9 4,-1.2 -4,-0.4 3,-0.8 0.915 109.3 54.7 -57.7 -37.1 -8.2 1.4 8.1 43 43 A E H 3X S+ 0 0 29 -4,-0.8 4,-4.6 1,-0.3 -1,-0.3 0.871 98.1 62.1 -63.0 -31.9 -7.2 -1.3 5.7 44 44 A T H 3X S+ 0 0 0 -4,-2.4 4,-3.3 -9,-0.6 -1,-0.3 0.848 94.2 63.8 -60.6 -29.4 -4.7 1.2 4.4 45 45 A K H < S+ 0 0 12 -4,-2.1 3,-0.6 2,-0.2 -1,-0.3 0.920 109.6 55.3 -72.8 -38.1 2.5 -4.1 3.5 51 51 A N H 3< S+ 0 0 7 -4,-2.8 -2,-0.3 1,-0.3 -1,-0.2 0.807 104.1 55.8 -58.1 -32.3 3.7 -0.8 2.0 52 52 A K H 3< S- 0 0 53 -4,-2.6 -1,-0.3 -5,-0.1 -2,-0.2 0.861 82.1-174.1 -67.4 -37.0 6.4 -1.0 4.7 53 53 A F << - 0 0 7 -4,-1.1 -35,-0.2 -3,-0.6 6,-0.1 0.890 17.5-177.6 35.0 59.3 7.5 -4.5 3.4 54 54 A K - 0 0 97 -5,-0.5 7,-0.1 4,-0.1 5,-0.1 0.549 43.8 -55.5 -59.9-145.3 9.9 -4.8 6.3 55 55 A K S S+ 0 0 154 1,-0.2 3,-0.1 3,-0.1 4,-0.1 1.000 138.3 27.8 -66.0 -74.4 12.2 -7.9 6.8 56 56 A S S S+ 0 0 120 1,-0.3 2,-1.6 2,-0.1 -1,-0.2 0.799 115.9 68.1 -59.4 -29.0 9.9 -10.9 6.7 57 57 A T S S- 0 0 49 -8,-0.1 -1,-0.3 3,-0.1 0, 0.0 -0.524 87.1-170.0 -89.6 67.5 7.6 -8.8 4.5 58 58 A N > - 0 0 95 -2,-1.6 3,-4.7 1,-0.1 4,-0.2 -0.027 43.2 -88.0 -58.3 159.9 10.1 -8.8 1.7 59 59 A V T > S+ 0 0 30 1,-0.3 3,-4.0 2,-0.2 4,-0.4 0.774 123.2 80.1 -39.5 -30.6 9.6 -6.6 -1.4 60 60 A E T >> S+ 0 0 135 1,-0.3 4,-1.7 2,-0.2 3,-0.9 0.838 75.5 76.3 -48.9 -28.1 7.6 -9.5 -2.7 61 61 A I H <> S+ 0 0 6 -3,-4.7 4,-4.0 1,-0.3 5,-0.3 0.811 78.2 72.1 -50.8 -34.2 5.0 -7.8 -0.5 62 62 A S H <> S+ 0 0 8 -3,-4.0 4,-1.5 1,-0.3 -1,-0.3 0.953 104.2 37.5 -50.6 -51.7 4.7 -5.2 -3.2 63 63 A K H <> S+ 0 0 164 -3,-0.9 4,-2.3 -4,-0.4 -1,-0.3 0.839 114.4 59.5 -66.5 -30.4 2.9 -7.8 -5.3 64 64 A L H X S+ 0 0 81 -4,-1.7 4,-3.0 2,-0.2 -2,-0.3 0.916 100.2 52.5 -63.7 -45.1 1.3 -8.9 -2.1 65 65 A V H X S+ 0 0 6 -4,-4.0 4,-1.4 2,-0.2 -1,-0.2 0.888 107.0 55.5 -58.9 -33.8 -0.2 -5.5 -1.5 66 66 A K H >X S+ 0 0 108 -4,-1.5 4,-1.4 -5,-0.3 3,-1.0 0.966 107.8 45.7 -61.5 -49.8 -1.6 -5.9 -5.0 67 67 A K H 3X S+ 0 0 152 -4,-2.3 4,-1.6 1,-0.3 5,-0.3 0.899 107.1 60.4 -57.4 -36.8 -3.2 -9.2 -3.9 68 68 A M H 3X S+ 0 0 49 -4,-3.0 4,-2.6 1,-0.2 -1,-0.3 0.834 97.2 60.4 -58.6 -32.1 -4.3 -7.1 -0.9 69 69 A I H