==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 29-MAR-07 2EOK . COMPND 2 MOLECULE: ZINC FINGER PROTEIN 268; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR N.TOCHIO,T.TOMIZAWA,H.ABE,K.SAITO,H.LI,M.SATO,S.KOSHIBA, . 42 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3836.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 45.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 11.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 19.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 132 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 154.6 -6.1 5.5 -14.0 2 2 A S + 0 0 131 1,-0.1 0, 0.0 3,-0.0 0, 0.0 -1.000 360.0 163.8-140.2 138.7 -2.4 6.2 -14.7 3 3 A S S S- 0 0 140 -2,-0.4 -1,-0.1 0, 0.0 0, 0.0 0.726 74.7 -45.9-116.0 -55.2 -0.2 6.0 -17.8 4 4 A G S S+ 0 0 72 3,-0.0 3,-0.1 0, 0.0 -2,-0.0 -0.048 95.3 102.6 175.1 69.5 3.1 7.8 -17.1 5 5 A S S S+ 0 0 132 1,-0.3 2,-0.2 2,-0.1 -3,-0.0 0.655 80.0 30.7-123.3 -47.9 2.9 11.2 -15.5 6 6 A S S S- 0 0 120 1,-0.2 -1,-0.3 0, 0.0 -4,-0.0 -0.631 79.9-107.6-112.1 171.6 3.9 10.8 -11.8 7 7 A G - 0 0 70 -2,-0.2 2,-0.4 -3,-0.1 -1,-0.2 0.284 40.7 -90.0 -77.5-151.5 6.2 8.4 -10.0 8 8 A E - 0 0 180 13,-0.0 -1,-0.1 12,-0.0 12,-0.0 -0.995 32.5-112.5-133.4 135.3 5.2 5.5 -7.7 9 9 A K - 0 0 97 -2,-0.4 12,-0.2 1,-0.1 13,-0.1 -0.305 18.2-139.4 -63.5 144.1 4.6 5.5 -3.9 10 10 A P S S+ 0 0 99 0, 0.0 2,-0.2 0, 0.0 11,-0.1 0.942 83.7 69.5 -69.7 -50.2 7.1 3.5 -1.8 11 11 A Y E +A 20 0A 86 9,-1.0 9,-2.5 10,-0.2 2,-0.3 -0.506 62.2 178.3 -74.2 137.2 4.7 1.9 0.6 12 12 A V E -A 19 0A 74 7,-0.3 7,-0.3 -2,-0.2 6,-0.1 -0.918 27.8-120.9-146.0 115.6 2.3 -0.7 -0.9 13 13 A C - 0 0 7 5,-1.2 14,-0.0 -2,-0.3 13,-0.0 0.002 12.9-154.4 -48.0 157.5 -0.3 -2.7 1.0 14 14 A S S S+ 0 0 121 3,-0.1 -1,-0.1 2,-0.1 0, 0.0 0.729 85.1 60.6-106.7 -35.2 0.0 -6.5 1.0 15 15 A D S S- 0 0 112 1,-0.1 -2,-0.0 3,-0.0 15,-0.0 0.979 133.3 -0.0 -57.2 -61.5 -3.6 -7.5 1.6 16 16 A C S S- 0 0 76 2,-0.0 -1,-0.1 0, 0.0 -2,-0.1 0.819 99.2-116.2 -97.5 -41.8 -5.0 -5.9 -1.6 17 17 A G + 0 0 46 1,-0.1 -3,-0.1 0, 0.0 -2,-0.0 0.642 56.0 155.4 110.7 23.3 -1.8 -4.4 -3.0 18 18 A K - 0 0 119 -6,-0.1 -5,-1.2 1,-0.1 2,-0.3 -0.161 34.8-125.8 -74.0 172.9 -2.6 -0.7 -2.9 19 19 A A E -A 12 0A 32 -7,-0.3 2,-0.3 7,-0.0 -7,-0.3 -0.928 20.6-173.0-125.1 148.9 -0.0 2.1 -2.7 20 20 A F E -A 11 0A 25 -9,-2.5 -9,-1.0 -2,-0.3 6,-0.0 -0.998 22.6-149.9-143.8 136.6 0.5 5.0 -0.2 21 21 A T S S+ 0 0 71 -2,-0.3 2,-0.3 -12,-0.2 -10,-0.2 0.929 89.1 43.3 -68.6 -46.9 2.8 8.0 -0.2 22 22 A F S > S- 0 0 131 1,-0.1 4,-1.1 -12,-0.1 -1,-0.1 -0.797 77.2-135.3-104.2 144.9 3.0 8.2 3.6 23 23 A K H >> S+ 0 0 111 -2,-0.3 4,-2.0 1,-0.2 3,-1.6 0.971 103.6 58.2 -58.9 -57.6 3.4 5.2 5.9 24 24 A S H 3> S+ 0 0 74 1,-0.3 4,-2.2 2,-0.2 5,-0.3 0.872 100.4 58.9 -38.9 -50.5 0.8 6.4 8.4 25 25 A Q H 3> S+ 0 0 105 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.883 109.6 43.8 -48.6 -43.9 -1.7 6.4 5.6 26 26 A L H X S+ 0 0 108 -4,-2.2 3,-0.6 -5,-0.3 4,-0.6 0.865 113.0 53.3 -76.6 -38.2 -4.6 3.1 8.9 29 29 A H H >X S+ 0 0 26 -4,-1.8 3,-2.1 -5,-0.3 4,-0.5 0.955 96.1 65.2 -61.5 -52.6 -5.6 1.6 5.6 30 30 A Q H >< S+ 0 0 105 -4,-3.1 3,-1.6 1,-0.3 -1,-0.2 0.796 92.5 67.9 -40.5 -33.3 -4.5 -2.0 6.5 31 31 A G H X4 S+ 0 0 30 -3,-0.6 3,-0.5 -4,-0.5 -1,-0.3 0.915 83.2 67.8 -55.8 -46.7 -7.3 -1.7 9.1 32 32 A I H