==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 30-MAR-07 2EQR . COMPND 2 MOLECULE: NUCLEAR RECEPTOR COREPRESSOR 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR H.P.ZHANG,F.HAYAHSI,S.YOKOYAMA,RIKEN STRUCTURAL . 61 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5818.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 43 70.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 13.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 18.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 39.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 134 0, 0.0 3,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 76.4 4.1 2.2 -20.4 2 2 A S + 0 0 125 1,-0.1 2,-0.5 2,-0.0 0, 0.0 0.894 360.0 73.0 -91.8 -52.5 7.5 1.9 -22.1 3 3 A S - 0 0 102 1,-0.2 3,-0.3 2,-0.0 -1,-0.1 -0.528 63.0-167.9 -69.4 115.4 9.9 2.9 -19.3 4 4 A G S S+ 0 0 81 -2,-0.5 2,-0.9 1,-0.3 -1,-0.2 1.000 76.4 22.7 -66.6 -72.8 10.0 0.1 -16.8 5 5 A S + 0 0 119 1,-0.2 -1,-0.3 3,-0.0 3,-0.0 -0.808 64.6 172.9-102.5 95.7 11.8 1.6 -13.8 6 6 A S - 0 0 113 -2,-0.9 -1,-0.2 -3,-0.3 2,-0.1 0.942 54.8 -97.1 -65.4 -49.1 11.4 5.4 -14.0 7 7 A G + 0 0 51 1,-0.1 -1,-0.1 3,-0.0 0, 0.0 -0.463 52.4 166.4 169.7 -89.8 13.0 5.9 -10.6 8 8 A D + 0 0 132 1,-0.1 4,-0.2 -2,-0.1 -1,-0.1 0.856 22.5 159.6 45.0 41.0 11.0 6.4 -7.4 9 9 A R + 0 0 209 2,-0.1 -1,-0.1 -3,-0.1 2,-0.1 0.777 41.0 101.1 -62.4 -26.3 14.2 5.9 -5.5 10 10 A Q S S- 0 0 120 1,-0.1 2,-0.7 2,-0.0 -3,-0.0 -0.380 89.8-106.5 -63.6 134.2 12.6 7.6 -2.5 11 11 A F - 0 0 194 -2,-0.1 2,-0.6 2,-0.1 -1,-0.1 -0.494 42.7-175.3 -66.2 108.5 11.4 5.2 0.2 12 12 A M - 0 0 112 -2,-0.7 2,-0.8 -4,-0.2 -1,-0.0 -0.924 11.8-176.5-113.3 112.4 7.6 5.2 -0.2 13 13 A N + 0 0 120 -2,-0.6 2,-0.3 2,-0.1 -2,-0.1 -0.701 42.0 109.5-108.3 79.4 5.7 3.2 2.4 14 14 A V S S- 0 0 86 -2,-0.8 2,-0.2 0, 0.0 -2,-0.1 -0.968 74.6 -99.4-154.3 135.1 2.0 3.5 1.3 15 15 A W - 0 0 62 -2,-0.3 2,-0.3 4,-0.1 -2,-0.1 -0.334 48.4-171.4 -55.8 118.3 -0.5 1.1 -0.2 16 16 A T > - 0 0 58 -2,-0.2 4,-2.7 1,-0.1 3,-0.5 -0.733 37.7-103.1-113.0 162.8 -0.6 1.8 -4.0 17 17 A D H > S+ 0 0 119 1,-0.3 4,-2.7 -2,-0.3 5,-0.3 0.926 122.1 53.8 -46.0 -55.8 -2.8 0.6 -6.8 18 18 A H H > S+ 0 0 144 1,-0.2 4,-1.3 2,-0.2 -1,-0.3 0.882 112.2 46.1 -47.9 -43.9 -0.2 -1.9 -8.0 19 19 A E H >> S+ 0 0 33 -3,-0.5 4,-2.5 2,-0.2 3,-0.8 0.975 109.5 51.7 -64.8 -57.3 -0.0 -3.3 -4.5 20 20 A K H 3X S+ 0 0 83 -4,-2.7 4,-2.0 1,-0.3 5,-0.3 0.907 105.9 56.2 -45.4 -51.3 -3.8 -3.5 -3.9 21 21 A E H 3X S+ 0 0 117 -4,-2.7 4,-2.8 1,-0.2 -1,-0.3 0.883 110.4 45.4 -49.9 -43.0 -4.1 -5.4 -7.2 22 22 A I H X S+ 0 0 38 -4,-2.0 4,-2.2 2,-0.2 3,-0.9 0.936 109.2 68.6 -71.3 -48.5 -3.6 -13.9 -4.5 27 27 A F H 3< S+ 0 0 64 -4,-1.2 -2,-0.2 -5,-0.4 -1,-0.2 0.862 97.7 54.4 -36.0 -52.1 -6.6 -13.5 -2.1 28 28 A I H 3< S+ 0 0 106 -4,-2.5 -1,-0.3 2,-0.2 -2,-0.2 0.920 119.2 32.6 -51.0 -49.9 -8.8 -15.1 -4.8 29 29 A Q H << S+ 0 0 127 -3,-0.9 -2,-0.2 -4,-0.8 -1,-0.1 0.992 137.0 20.9 -71.5 -66.4 -6.5 -18.1 -5.0 30 30 A H S >< S- 0 0 107 -4,-2.2 3,-0.9 3,-0.1 7,-0.3 -0.674 85.2-173.3-107.8 77.2 -5.2 -18.4 -1.4 31 31 A P T 3 + 0 0 65 0, 0.0 -3,-0.1 0, 0.0 -4,-0.1 -0.342 68.0 19.1 -69.8 149.5 -7.8 -16.4 0.6 32 32 A K T 3 S+ 0 0 169 1,-0.1 2,-0.5 -2,-0.1 3,-0.1 0.789 95.3 121.4 61.2 27.9 -7.3 -15.8 4.3 33 33 A N X> + 0 0 71 -3,-0.9 4,-1.4 1,-0.1 3,-0.6 -0.785 26.2 162.9-125.7 87.9 -3.6 -16.5 3.7 34 34 A F H 3> S+ 0 0 41 -2,-0.5 4,-1.4 1,-0.2 5,-0.2 0.686 70.1 75.5 -75.8 -18.4 -1.4 -13.5 4.7 35 35 A G H 3> S+ 0 0 48 2,-0.2 4,-0.6 3,-0.1 -1,-0.2 0.832 108.1 28.8 -62.1 -32.8 1.6 -15.8 4.8 36 36 A L H X> S+ 0 0 55 -3,-0.6 4,-1.7 2,-0.2 3,-0.9 0.920 114.5 56.1 -91.1 -63.3 1.7 -15.8 1.0 37 37 A I H 3X S+ 0 0 0 -4,-1.4 4,-1.1 1,-0.3 -2,-0.2 0.789 114.5 46.6 -39.8 -32.7 0.2 -12.5 -0.1 38 38 A A H 3< S+ 0 0 5 -4,-1.4 -1,-0.3 2,-0.2 6,-0.3 0.857 100.9 64.1 -80.1 -38.1 2.9 -11.0 2.1 39 39 A S H << S+ 0 0 89 -3,-0.9 -2,-0.2 -4,-0.6 3,-0.2 0.873 106.7 45.0 -52.9 -40.1 5.7 -13.2 0.7 40 40 A Y H < S+ 0 0 153 -4,-1.7 2,-1.7 1,-0.2 -1,-0.2 0.912 105.6 62.7 -71.3 -44.2 5.2 -11.6 -2.7 41 41 A L >< + 0 0 5 -4,-1.1 3,-1.7 -5,-0.3 -1,-0.2 -0.579 62.3 171.8 -85.2 78.7 5.0 -8.0 -1.3 42 42 A E T 3 S+ 0 0 171 -2,-1.7 -1,-0.2 1,-0.3 -2,-0.1 0.899 75.9 63.3 -53.0 -44.6 8.5 -7.8 0.2 43 43 A R T 3 S+ 0 0 158 -3,-0.2 -1,-0.3 2,-0.0 2,-0.3 0.779 108.4 51.1 -52.2 -27.2 8.0 -4.1 0.9 44 44 A K S < S- 0 0 27 -3,-1.7 2,-0.2 -6,-0.3 -31,-0.0 -0.756 80.2-135.9-112.3 159.9 5.2 -5.3 3.3 45 45 A S > - 0 0 60 -2,-0.3 4,-1.1 1,-0.1 3,-0.3 -0.480 27.9-103.2-106.0 178.4 5.2 -7.9 6.1 46 46 A V H >> S+ 0 0 66 1,-0.2 4,-1.5 2,-0.2 3,-0.9 0.978 122.1 41.8 -65.2 -58.3 2.8 -10.7 7.1 47 47 A P H 34 S+ 0 0 77 0, 0.0 4,-0.2 0, 0.0 -1,-0.2 0.457 108.4 67.1 -69.8 0.7 1.2 -8.8 10.0 48 48 A D H 3> S+ 0 0 79 -3,-0.3 4,-0.5 2,-0.1 3,-0.2 0.806 103.0 40.2 -89.7 -35.0 1.2 -5.7 7.9 49 49 A C H XX S+ 0 0 0 -4,-1.1 4,-1.3 -3,-0.9 3,-0.7 0.865 96.4 77.2 -80.9 -39.5 -1.3 -6.9 5.3 50 50 A V H 3X S+ 0 0 44 -4,-1.5 4,-0.7 1,-0.3 -1,-0.2 0.797 92.2 58.7 -39.6 -34.3 -3.6 -8.6 7.9 51 51 A L H >> S+ 0 0 106 -4,-0.2 3,-2.2 -3,-0.2 4,-2.1 0.966 96.8 57.2 -62.8 -54.9 -4.8 -5.1 8.6 52 52 A Y H < S+ 0 0 115 -4,-2.1 3,-1.0 1,-0.3 -2,-0.2 0.909 112.3 43.5 -49.0 -48.5 -9.9 -2.0 6.6 56 56 A T H 3< S+ 0 0 96 -4,-2.8 -1,-0.3 1,-0.3 -2,-0.2 0.748 120.1 44.3 -70.2 -23.7 -11.8 -3.3 3.6 57 57 A K T << S+ 0 0 127 -4,-0.6 2,-0.7 -3,-0.5 -1,-0.3 -0.268 82.0 129.4-115.1 44.6 -14.1 -5.3 5.9 58 58 A K < + 0 0 167 -3,-1.0 2,-0.2 2,-0.0 -3,-0.0 -0.882 28.4 163.2-105.3 109.9 -14.7 -2.6 8.5 59 59 A N - 0 0 152 -2,-0.7 2,-0.9 0, 0.0 -2,-0.0 -0.748 43.0-105.6-120.4 168.5 -18.4 -2.0 9.3 60 60 A E 0 0 175 -2,-0.2 -2,-0.0 1,-0.2 0, 0.0 -0.816 360.0 360.0 -99.3 101.0 -20.4 -0.4 12.1 61 61 A N 0 0 190 -2,-0.9 -1,-0.2 0, 0.0 0, 0.0 0.503 360.0 360.0 -86.7 360.0 -21.9 -3.0 14.3