==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PHEROMONE 14-FEB-94 1ERC . COMPND 2 MOLECULE: PHEROMONE ER-1; . SOURCE 2 ORGANISM_SCIENTIFIC: EUPLOTES RAIKOVI; . AUTHOR S.MRONGA,P.LUGINBUHL,L.R.BROWN,C.ORTENZI,P.LUPORINI, . 40 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2939.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 72.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 174 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 147.9 -8.0 3.6 9.5 2 2 A A > + 0 0 26 3,-0.0 4,-2.2 13,-0.0 5,-0.2 0.432 360.0 96.1-161.7 -27.8 -4.7 2.1 8.3 3 3 A a H >> S+ 0 0 27 2,-0.2 4,-1.2 1,-0.2 3,-1.2 0.969 101.2 34.8 -46.7 -64.5 -4.8 1.1 4.6 4 4 A E H 3> S+ 0 0 108 1,-0.3 4,-2.0 2,-0.2 3,-0.3 0.898 113.5 61.4 -56.0 -41.4 -3.2 4.3 3.4 5 5 A Q H 3> S+ 0 0 114 1,-0.2 4,-1.2 2,-0.2 -1,-0.3 0.807 98.1 59.2 -53.5 -34.6 -1.1 4.4 6.7 6 6 A A H X<>S+ 0 0 6 -4,-2.2 3,-0.9 -3,-1.2 5,-0.5 0.959 104.3 48.7 -59.7 -49.3 0.4 1.1 5.5 7 7 A A H ><5S+ 0 0 2 -4,-1.2 3,-1.7 1,-0.3 -2,-0.2 0.868 103.1 61.7 -62.5 -35.0 1.6 2.8 2.3 8 8 A I H 3<5S+ 0 0 108 -4,-2.0 -1,-0.3 1,-0.3 -2,-0.2 0.860 98.1 58.4 -51.6 -39.7 3.1 5.5 4.5 9 9 A Q T <<5S- 0 0 137 -4,-1.2 -1,-0.3 -3,-0.9 -2,-0.2 0.619 110.4-127.2 -74.5 -10.9 5.2 2.8 6.1 10 10 A b T < 5 + 0 0 55 -3,-1.7 2,-0.3 -4,-0.4 -3,-0.2 0.962 65.4 129.0 69.4 50.8 6.7 2.0 2.6 11 11 A V >>< - 0 0 60 -5,-0.5 4,-1.4 1,-0.1 3,-0.9 -0.927 49.2-157.8-141.4 110.2 5.9 -1.8 2.7 12 12 A E H 3> S+ 0 0 57 -2,-0.3 4,-2.2 1,-0.3 3,-0.2 0.938 99.8 54.0 -53.9 -45.6 4.0 -3.5 -0.1 13 13 A S H 3> S+ 0 0 82 1,-0.2 4,-3.0 2,-0.2 -1,-0.3 0.762 99.0 62.9 -61.5 -27.7 3.0 -6.2 2.4 14 14 A A H <> S+ 0 0 17 -3,-0.9 4,-2.8 2,-0.2 5,-0.3 0.972 107.3 41.8 -65.1 -49.7 1.6 -3.6 4.7 15 15 A c H X S+ 0 0 0 -4,-1.4 4,-2.1 1,-0.2 -2,-0.2 0.919 114.4 54.8 -59.6 -41.9 -1.0 -2.6 2.1 16 16 A E H < S+ 0 0 86 -4,-2.2 -2,-0.2 1,-0.2 -1,-0.2 0.944 113.8 38.3 -57.0 -51.5 -1.5 -6.3 1.4 17 17 A S H < S+ 0 0 97 -4,-3.0 -1,-0.2 -5,-0.1 -2,-0.2 0.905 127.1 36.3 -65.2 -43.2 -2.2 -7.2 5.0 18 18 A L H < S+ 0 0 82 -4,-2.8 -3,-0.2 -5,-0.3 -2,-0.2 0.993 106.5 59.3 -73.5 -67.7 -4.2 -4.1 5.7 19 19 A a S < S- 0 0 2 -4,-2.1 4,-0.0 -5,-0.3 6,-0.0 -0.385 76.4-133.6 -82.8 143.0 -6.2 -3.2 2.6 20 20 A T - 0 0 112 1,-0.1 2,-0.2 -2,-0.1 -1,-0.1 0.963 46.7 -96.7 -61.4 -80.9 -8.7 -5.7 1.3 21 21 A E S S+ 0 0 133 1,-0.0 3,-0.4 0, 0.0 -1,-0.1 -0.730 88.2 53.5 168.2 151.8 -8.1 -5.8 -2.5 22 22 A G S S- 0 0 67 1,-0.2 2,-0.0 -2,-0.2 -2,-0.0 0.930 129.1 -8.2 76.4 50.6 -9.4 -4.4 -5.8 23 23 A E S > S+ 0 0 158 -3,-0.0 4,-2.8 -4,-0.0 5,-0.3 -0.629 130.0 63.8 134.8 -60.6 -9.3 -0.6 -5.0 24 24 A D H > S+ 0 0 72 -3,-0.4 4,-1.3 1,-0.2 5,-0.2 0.955 115.1 34.0 -56.1 -56.0 -8.4 -0.5 -1.3 25 25 A R H >> S+ 0 0 56 1,-0.2 4,-3.2 2,-0.2 3,-0.7 0.986 113.6 62.7 -56.6 -58.9 -5.1 -2.1 -1.9 26 26 A T H 3> S+ 0 0 60 1,-0.3 4,-2.9 2,-0.2 5,-0.3 0.805 104.4 44.1 -43.1 -53.6 -4.7 -0.4 -5.3 27 27 A G H 3X S+ 0 0 45 -4,-2.8 4,-1.0 1,-0.2 -1,-0.3 0.915 122.5 39.3 -58.5 -44.6 -4.6 3.2 -4.0 28 28 A c H X S+ 0 0 108 -4,-1.0 3,-2.1 -3,-0.4 4,-1.0 0.995 113.1 38.3 -59.0 -62.6 1.7 4.8 -3.7 32 32 A I H >X S+ 0 0 2 -4,-1.6 4,-2.2 1,-0.3 3,-1.3 0.927 112.5 59.9 -50.2 -48.2 4.5 2.5 -2.5 33 33 A Y H 3< S+ 0 0 142 -4,-3.2 -1,-0.3 1,-0.3 -2,-0.2 0.545 119.0 28.2 -63.3 -13.2 4.9 1.2 -6.0 34 34 A S H << S+ 0 0 69 -3,-2.1 -1,-0.3 -4,-0.5 -2,-0.2 0.295 131.7 35.7-125.5 3.3 5.7 4.7 -7.2 35 35 A N H << S+ 0 0 72 -3,-1.3 -3,-0.2 -4,-1.0 -2,-0.2 0.680 102.5 66.7-119.7 -51.2 7.2 6.2 -4.0 36 36 A b S >X S- 0 0 13 -4,-2.2 4,-2.1 -5,-0.3 3,-1.8 -0.500 88.2 -82.0 -74.9 146.4 9.2 3.4 -2.3 37 37 A P T 34 S+ 0 0 89 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 -0.431 110.8 44.1 -65.0 158.7 12.4 1.9 -3.7 38 38 A P T 34 S+ 0 0 112 0, 0.0 -5,-0.1 0, 0.0 -2,-0.1 -0.819 132.4 30.9 -85.2 30.6 13.0 -0.2 -5.6 39 39 A Y T <4 0 0 98 -3,-1.8 -6,-0.1 -7,-0.2 -5,-0.1 0.797 360.0 360.0-105.3 -71.6 10.2 1.5 -7.7 40 40 A V < 0 0 129 -4,-2.1 -5,-0.2 -8,-0.6 -4,-0.2 0.043 360.0 360.0 55.4 360.0 10.1 5.3 -6.9