==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PHEROMONE 02-DEC-92 1ERP . COMPND 2 MOLECULE: PHEROMONE ER-10; . SOURCE 2 ORGANISM_SCIENTIFIC: EUPLOTES RAIKOVI; . AUTHOR L.R.BROWN,S.MRONGA,R.BRADSHAW,C.ORTENZI,P.LUPORINI, . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2844.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 71.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 44.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 10.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D > 0 0 139 0, 0.0 4,-3.4 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0-157.9 -0.0 -10.8 -4.1 2 2 A L H > + 0 0 69 2,-0.2 4,-2.2 1,-0.2 17,-0.2 0.871 360.0 50.0 -53.7 -40.5 1.8 -7.7 -5.6 3 3 A a H > S+ 0 0 30 15,-0.3 4,-1.3 2,-0.2 3,-0.4 0.991 113.8 41.6 -59.7 -63.6 -1.0 -5.6 -4.0 4 4 A E H >> S+ 0 0 133 1,-0.2 4,-2.9 2,-0.2 3,-1.2 0.935 112.6 57.3 -47.8 -51.3 -0.8 -7.1 -0.5 5 5 A Q H 3X S+ 0 0 84 -4,-3.4 4,-3.3 1,-0.3 5,-0.3 0.880 101.4 55.4 -50.2 -43.6 3.0 -7.1 -0.9 6 6 A S H 3<>S+ 0 0 2 -4,-2.2 5,-3.0 -3,-0.4 -1,-0.3 0.814 113.4 41.8 -63.9 -26.5 2.9 -3.3 -1.5 7 7 A A H X<5S+ 0 0 20 -4,-1.3 3,-0.6 -3,-1.2 -2,-0.2 0.937 119.7 42.8 -75.5 -50.5 1.0 -3.0 1.9 8 8 A L H 3<5S+ 0 0 129 -4,-2.9 -2,-0.2 1,-0.3 -3,-0.2 0.881 122.0 37.4 -67.7 -45.5 3.2 -5.5 3.7 9 9 A Q T 3<5S- 0 0 125 -4,-3.3 -1,-0.3 -5,-0.2 -3,-0.2 0.394 113.4-115.7 -89.4 0.7 6.6 -4.3 2.4 10 10 A b T < 5 + 0 0 48 -3,-0.6 2,-0.4 -5,-0.3 -3,-0.2 0.998 53.1 162.0 62.0 73.4 5.5 -0.6 2.5 11 11 A N >< - 0 0 50 -5,-3.0 4,-2.8 1,-0.1 5,-0.2 -0.806 22.8-175.8-130.4 88.0 5.6 0.3 -1.2 12 12 A E H > S+ 0 0 93 -2,-0.4 4,-1.0 2,-0.2 5,-0.2 0.863 89.5 55.4 -42.8 -41.3 3.6 3.5 -2.1 13 13 A Q H >> S+ 0 0 75 1,-0.2 4,-2.7 2,-0.2 3,-1.7 0.980 109.2 43.7 -64.2 -57.9 4.4 2.7 -5.7 14 14 A G H 3>>S+ 0 0 0 1,-0.3 5,-2.4 2,-0.2 4,-2.3 0.879 105.5 63.6 -51.8 -43.8 3.0 -0.7 -5.6 15 15 A c H 3<5S+ 0 0 0 -4,-2.8 13,-0.3 -9,-0.3 -1,-0.3 0.732 118.0 28.2 -57.7 -24.4 -0.0 0.6 -3.7 16 16 A H H <<5S+ 0 0 95 -3,-1.7 -2,-0.2 -4,-1.0 -1,-0.2 0.701 131.0 38.3 -95.9 -33.8 -0.8 2.7 -6.8 17 17 A N H <5S+ 0 0 118 -4,-2.7 -3,-0.2 -5,-0.2 -2,-0.2 0.887 129.6 23.0 -91.3 -47.4 0.7 0.5 -9.5 18 18 A F T <5S+ 0 0 84 -4,-2.3 -15,-0.3 -5,-0.2 -3,-0.2 0.865 111.0 72.9 -90.0 -50.5 -0.2 -3.1 -8.3 19 19 A a S - 0 0 55 1,-0.1 4,-2.8 -2,-0.1 -1,-0.1 -0.281 33.7 -99.1 -71.5 167.8 -6.5 -1.5 -7.7 21 21 A P T 4 S+ 0 0 107 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.733 125.9 54.8 -59.4 -21.5 -8.0 2.0 -7.2 22 22 A E T > S+ 0 0 162 2,-0.2 4,-0.7 1,-0.1 -3,-0.0 0.925 114.4 36.3 -77.9 -47.5 -10.3 0.3 -4.6 23 23 A D H > S+ 0 0 90 1,-0.2 4,-2.7 2,-0.1 5,-0.2 0.810 97.3 90.8 -74.7 -28.2 -7.4 -1.2 -2.5 24 24 A K H X>S+ 0 0 83 -4,-2.8 4,-2.8 1,-0.2 5,-0.7 0.808 93.6 35.1 -31.9 -64.9 -5.3 2.0 -3.3 25 25 A P H >>S+ 0 0 74 0, 0.0 5,-0.9 0, 0.0 4,-0.7 0.940 117.7 54.8 -62.1 -44.9 -6.4 4.0 -0.1 26 26 A G H <5S+ 0 0 44 -4,-0.7 -2,-0.2 3,-0.2 -3,-0.1 0.829 121.1 31.4 -50.7 -37.8 -6.5 0.7 1.8 27 27 A c H X5S+ 0 0 3 -4,-2.7 4,-3.2 -3,-0.2 -3,-0.2 0.946 131.2 28.9 -86.9 -67.4 -2.9 0.1 0.8 28 28 A L H X5S+ 0 0 19 -4,-2.8 4,-3.6 -13,-0.3 5,-0.3 0.940 119.6 53.4 -66.1 -53.6 -1.2 3.5 0.5 29 29 A G H <4 S- 0 0 44 -3,-1.6 3,-2.4 -4,-0.4 4,-1.8 -0.615 70.3-149.6 -68.0 113.7 0.4 5.8 8.3 34 34 A P T 34 S+ 0 0 92 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.693 92.0 75.3 -62.4 -15.4 3.7 6.2 10.3 35 35 A E T 34 S+ 0 0 167 2,-0.2 -4,-0.1 1,-0.1 -3,-0.1 0.780 112.3 22.9 -62.0 -29.2 2.2 3.8 12.9 36 36 A L T <4 S+ 0 0 104 -3,-2.4 -5,-0.1 -6,-0.3 -1,-0.1 0.840 140.4 17.8-102.0 -55.7 2.9 0.9 10.3 37 37 A b < 0 0 42 -4,-1.8 -1,-0.2 -6,-0.6 -2,-0.2 -0.899 360.0 360.0-123.4 97.2 5.7 2.2 8.1 38 38 A P 0 0 148 0, 0.0 -1,-0.1 0, 0.0 -3,-0.1 0.749 360.0 360.0 -79.1 360.0 7.6 5.2 9.5