==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PHEROMONE 22-MAR-96 1ERY . COMPND 2 MOLECULE: PHEROMONE ER-11; . SOURCE 2 ORGANISM_SCIENTIFIC: EUPLOTES RAIKOVI; . AUTHOR P.LUGINBUHL,J.WU,O.ZERBE,C.ORTENZI,P.LUPORINI,K.WUTHRICH . 38 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2771.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 63.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 47.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D > 0 0 167 0, 0.0 4,-2.3 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 162.5 -7.9 -8.5 -3.4 2 2 A E H > + 0 0 103 2,-0.2 4,-3.3 1,-0.2 5,-0.2 0.926 360.0 54.2 -75.7 -42.2 -7.0 -6.9 -0.1 3 3 A a H > S+ 0 0 24 15,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.896 110.9 47.2 -55.6 -41.4 -3.5 -5.9 -1.4 4 4 A A H > S+ 0 0 58 2,-0.2 4,-2.7 1,-0.2 5,-0.2 0.974 113.1 47.1 -62.6 -54.7 -5.3 -4.2 -4.3 5 5 A N H X S+ 0 0 71 -4,-2.3 4,-2.1 1,-0.2 -2,-0.2 0.914 108.1 57.6 -53.9 -45.2 -7.7 -2.4 -2.0 6 6 A A H <>S+ 0 0 1 -4,-3.3 5,-1.6 2,-0.2 4,-0.4 0.914 109.5 43.4 -53.2 -49.4 -4.9 -1.4 0.3 7 7 A A H ><5S+ 0 0 22 -4,-1.9 3,-2.0 1,-0.2 -1,-0.2 0.954 113.8 51.1 -61.2 -47.3 -3.1 0.4 -2.6 8 8 A A H 3<5S+ 0 0 88 -4,-2.7 -2,-0.2 1,-0.3 -1,-0.2 0.756 108.8 52.9 -60.1 -26.6 -6.5 1.9 -3.7 9 9 A Q T 3<5S- 0 0 91 -4,-2.1 -1,-0.3 -5,-0.2 -2,-0.2 0.466 108.5-128.8 -87.6 -5.2 -6.9 3.0 -0.0 10 10 A b T < 5 + 0 0 25 -3,-2.0 2,-0.4 -4,-0.4 -3,-0.2 0.898 60.7 136.7 57.0 49.7 -3.5 4.8 -0.1 11 11 A S >< - 0 0 0 -5,-1.6 4,-2.4 1,-0.1 -1,-0.2 -0.978 47.8-168.1-136.9 125.3 -2.3 3.0 3.1 12 12 A I H > S+ 0 0 15 -2,-0.4 4,-2.8 2,-0.2 5,-0.3 0.822 97.0 61.4 -66.1 -34.2 1.0 1.4 4.1 13 13 A T H 4 S+ 0 0 89 1,-0.2 4,-0.4 2,-0.2 -1,-0.2 0.846 112.2 36.5 -73.0 -33.9 -0.8 -0.0 7.1 14 14 A L H > S+ 0 0 48 -8,-0.2 4,-0.9 2,-0.2 3,-0.4 0.853 113.0 60.2 -76.1 -41.1 -3.1 -1.9 4.7 15 15 A c H >X S+ 0 0 0 -4,-2.4 4,-2.9 -9,-0.3 3,-1.3 0.967 110.0 40.5 -51.4 -60.2 -0.3 -2.5 2.2 16 16 A N H 3< S+ 0 0 88 -4,-2.8 4,-0.3 1,-0.3 -1,-0.3 0.734 100.2 77.2 -59.9 -25.1 1.8 -4.5 4.7 17 17 A L H 34 S- 0 0 100 -4,-0.4 -1,-0.3 -3,-0.4 -2,-0.2 0.829 126.2 -16.2 -59.8 -34.5 -1.4 -6.2 6.0 18 18 A Y H << S+ 0 0 161 -3,-1.3 -15,-0.2 -4,-0.9 -2,-0.2 0.444 107.4 96.1-144.6 -10.8 -1.5 -8.6 3.0 19 19 A a >< + 0 0 2 -4,-2.9 3,-1.5 -5,-0.3 -3,-0.2 0.760 50.0 176.0 -72.6 -20.6 0.6 -7.5 0.1 20 20 A G G > S+ 0 0 40 -4,-0.3 3,-2.1 1,-0.3 4,-0.3 -0.336 77.0 1.2 53.3-125.0 3.7 -9.6 0.9 21 21 A P G > S+ 0 0 113 0, 0.0 3,-2.0 0, 0.0 4,-0.3 0.919 131.5 63.1 -57.4 -41.4 6.2 -9.1 -2.0 22 22 A L G <> S+ 0 0 96 -3,-1.5 4,-2.8 1,-0.3 -2,-0.2 0.555 75.5 93.9 -63.2 -7.6 3.8 -6.6 -3.6 23 23 A I H <> S+ 0 0 46 -3,-2.1 4,-3.4 2,-0.2 -1,-0.3 0.866 83.9 54.4 -45.7 -39.8 4.2 -4.5 -0.5 24 24 A E H <> S+ 0 0 109 -3,-2.0 4,-3.3 -4,-0.3 5,-0.2 0.996 111.0 38.6 -66.3 -62.4 6.9 -2.8 -2.6 25 25 A I H > S+ 0 0 98 -4,-0.3 4,-2.9 1,-0.2 -1,-0.2 0.820 117.9 55.5 -54.0 -31.3 4.8 -1.9 -5.6 26 26 A c H X S+ 0 0 4 -4,-2.8 4,-3.0 2,-0.2 -2,-0.2 0.987 111.6 39.4 -65.1 -56.6 2.0 -1.1 -3.1 27 27 A E H X S+ 0 0 87 -4,-3.4 4,-3.0 1,-0.2 -2,-0.2 0.916 116.4 53.9 -59.7 -41.7 4.1 1.4 -1.2 28 28 A L H X S+ 0 0 77 -4,-3.3 4,-2.7 -5,-0.2 -1,-0.2 0.936 111.0 44.0 -58.2 -51.7 5.6 2.7 -4.5 29 29 A T H X S+ 0 0 44 -4,-2.9 4,-2.7 2,-0.2 5,-0.4 0.934 112.2 52.4 -60.5 -47.5 2.1 3.3 -5.9 30 30 A V H X S+ 0 0 0 -4,-3.0 4,-2.8 1,-0.2 -2,-0.2 0.921 111.8 46.8 -57.5 -40.9 0.9 4.9 -2.7 31 31 A M H < S+ 0 0 142 -4,-3.0 -1,-0.2 1,-0.2 -2,-0.2 0.931 111.4 53.7 -58.5 -46.9 4.0 7.2 -2.9 32 32 A Q H < S+ 0 0 151 -4,-2.7 -2,-0.2 -5,-0.2 -1,-0.2 0.882 125.6 20.3 -56.3 -47.1 3.2 7.8 -6.5 33 33 A N H < S+ 0 0 98 -4,-2.7 2,-0.2 -5,-0.1 -1,-0.2 0.686 129.3 20.9 -94.3 -26.5 -0.4 8.9 -5.9 34 34 A b S < S- 0 0 48 -4,-2.8 -24,-0.0 -5,-0.4 -23,-0.0 -0.689 79.1 -96.7-143.0 178.7 -0.4 9.9 -2.2 35 35 A E - 0 0 184 -2,-0.2 -4,-0.1 -25,-0.1 -5,-0.1 -0.711 57.2-140.3-112.4 76.6 1.7 11.0 0.8 36 36 A P S S+ 0 0 30 0, 0.0 2,-0.1 0, 0.0 -25,-0.1 -0.424 77.0 74.1 -74.5 157.8 2.5 7.8 2.9 37 37 A P 0 0 111 0, 0.0 -26,-0.1 0, 0.0 -2,-0.0 0.254 360.0 360.0 -75.7 133.8 2.7 6.7 5.7 38 38 A F 0 0 140 -2,-0.1 -25,-0.1 -4,-0.0 -27,-0.1 -0.306 360.0 360.0 -56.4 360.0 -1.1 6.9 5.9