==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBIOTIC 24-OCT-05 2ERI . COMPND 2 MOLECULE: CIRCULIN B; . SOURCE 2 ORGANISM_SCIENTIFIC: CHASSALIA PARVIFLORA; . AUTHOR D.J.CRAIK,N.L.DALY . 31 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2386.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 58.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 29.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 16.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 28 0, 0.0 24,-0.2 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 -22.4 3.5 0.4 -4.5 2 2 A G + 0 0 68 22,-0.8 2,-0.2 1,-0.4 23,-0.1 0.361 360.0 124.9 96.2 -2.6 0.9 -0.6 -6.9 3 3 A E E -A 24 0A 32 21,-0.5 21,-2.5 9,-0.0 2,-0.4 -0.494 49.6-149.0 -86.9 158.9 -0.9 -2.5 -4.1 4 4 A S E -A 23 0A 77 19,-0.3 4,-0.5 -2,-0.2 3,-0.4 -0.991 13.9-169.7-133.5 125.6 -4.5 -2.0 -3.1 5 5 A b + 0 0 4 17,-1.1 18,-0.2 -2,-0.4 17,-0.1 -0.131 54.8 118.5-103.1 34.8 -5.7 -2.5 0.4 6 6 A V S S+ 0 0 73 16,-0.3 -1,-0.2 1,-0.1 17,-0.1 0.901 95.7 5.7 -66.5 -42.9 -9.3 -2.3 -0.8 7 7 A F S S+ 0 0 189 -3,-0.4 -2,-0.1 1,-0.4 -1,-0.1 0.748 139.0 19.7-109.3 -40.9 -10.1 -5.8 0.4 8 8 A I S S- 0 0 108 -4,-0.5 -1,-0.4 1,-0.0 3,-0.1 -0.953 86.6 -92.0-134.9 153.1 -6.9 -6.9 2.2 9 9 A P - 0 0 100 0, 0.0 -5,-0.1 0, 0.0 4,-0.1 -0.195 57.9 -80.9 -60.6 150.5 -3.9 -5.2 3.8 10 10 A c - 0 0 8 1,-0.1 3,-0.4 7,-0.1 9,-0.1 -0.147 29.0-151.8 -53.7 146.1 -0.8 -4.6 1.8 11 11 A I S > S+ 0 0 126 1,-0.2 3,-0.8 -3,-0.1 2,-0.7 0.843 93.0 60.3 -88.2 -39.9 1.6 -7.5 1.4 12 12 A S T 3>> + 0 0 45 1,-0.2 5,-2.6 2,-0.1 4,-1.9 -0.073 65.0 122.6 -82.4 40.2 4.8 -5.4 1.0 13 13 A T T 345 + 0 0 79 -2,-0.7 -1,-0.2 -3,-0.4 -2,-0.1 0.796 67.9 64.1 -68.5 -26.5 4.1 -3.9 4.4 14 14 A L T <45S+ 0 0 169 -3,-0.8 -1,-0.2 1,-0.2 -2,-0.1 0.862 103.5 44.8 -63.2 -40.0 7.6 -5.3 5.2 15 15 A L T 45S- 0 0 114 -3,-0.4 -2,-0.2 -4,-0.1 -1,-0.2 0.887 132.9 -89.7 -72.9 -40.4 9.1 -2.9 2.6 16 16 A G T <5S+ 0 0 26 -4,-1.9 2,-0.9 1,-0.1 12,-0.4 0.441 70.9 152.6 139.9 13.5 7.0 -0.0 3.9 17 17 A a < - 0 0 1 -5,-2.6 2,-0.3 9,-0.2 9,-0.3 -0.606 25.8-168.2 -75.5 105.1 3.8 -0.1 1.9 18 18 A S E -B 25 0A 73 7,-3.4 7,-2.4 -2,-0.9 2,-0.6 -0.742 27.1-109.2 -97.3 143.3 1.2 1.4 4.1 19 19 A b E +B 24 0A 74 -2,-0.3 2,-0.4 5,-0.2 5,-0.2 -0.586 48.3 165.3 -72.8 115.9 -2.5 1.3 3.5 20 20 A K E > -B 23 0A 84 3,-3.5 3,-1.9 -2,-0.6 -15,-0.1 -0.964 66.0 -11.5-140.7 121.7 -3.6 4.8 2.5 21 21 A N T 3 S- 0 0 140 -2,-0.4 3,-0.1 1,-0.3 -1,-0.1 0.847 125.7 -61.5 60.1 34.1 -6.9 5.8 0.9 22 22 A K T 3 S+ 0 0 105 1,-0.2 -17,-1.1 -17,-0.1 2,-0.4 0.492 124.5 101.7 69.5 6.5 -7.5 2.1 0.3 23 23 A V E < S-AB 4 20A 48 -3,-1.9 -3,-3.5 -19,-0.3 2,-0.5 -0.906 74.0-123.2-119.3 144.3 -4.3 2.2 -1.8 24 24 A c E +AB 3 19A 0 -21,-2.5 -22,-0.8 -2,-0.4 -21,-0.5 -0.787 33.3 172.0 -94.7 127.5 -0.9 1.0 -0.7 25 25 A Y E - B 0 18A 53 -7,-2.4 -7,-3.4 -2,-0.5 3,-0.3 -0.970 18.6-145.9-132.4 148.4 2.1 3.4 -0.8 26 26 A R B > S+C 30 0B 101 4,-3.5 4,-2.6 -2,-0.3 3,-0.4 -0.738 79.2 22.9-109.8 158.1 5.6 3.1 0.5 27 27 A N T 4 S- 0 0 150 -11,-0.4 2,-1.3 1,-0.3 -1,-0.2 0.840 131.1 -65.6 55.7 35.6 7.8 5.9 1.9 28 28 A G T 4 S+ 0 0 44 -12,-0.4 -1,-0.3 -3,-0.3 -3,-0.1 -0.379 131.1 15.9 89.2 -60.3 4.7 7.8 2.7 29 29 A V T 4 S+ 0 0 102 -2,-1.3 -2,-0.2 -3,-0.4 -1,-0.1 0.013 85.2 121.5-140.4 34.9 3.4 8.5 -0.8 30 30 A I B < C 26 0B 81 -4,-2.6 -4,-3.5 -29,-0.0 -2,-0.1 -0.874 360.0 360.0-103.0 110.3 5.2 6.2 -3.2 31 31 A P 0 0 84 0, 0.0 -6,-0.2 0, 0.0 -2,-0.1 -0.322 360.0 360.0 -55.7 360.0 2.6 4.0 -5.1