==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 07-MAY-00 1EYO . COMPND 2 MOLECULE: CONOTOXIN TVIIA; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.M.HILL,P.F.ALEWOOD,D.J.CRAIK . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2415.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 181 0, 0.0 2,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-172.0 -11.7 3.3 17.5 2 2 A a - 0 0 72 12,-0.0 2,-1.1 13,-0.0 11,-0.2 -0.976 360.0 -91.6-163.8 159.8 -10.3 -0.1 16.7 3 3 A S B -a 13 0A 14 9,-2.1 11,-2.1 -2,-0.3 3,-0.1 -0.677 49.0-167.6 -81.6 99.6 -8.9 -2.2 13.7 4 4 A G > - 0 0 25 -2,-1.1 3,-2.4 9,-0.2 20,-0.4 -0.097 49.0 -26.9 -76.4-175.9 -12.1 -4.0 12.5 5 5 A R T 3 S+ 0 0 195 1,-0.3 -1,-0.2 18,-0.1 20,-0.2 -0.017 135.0 6.4 -39.8 125.6 -11.9 -7.0 10.0 6 6 A D T 3 S+ 0 0 97 18,-1.8 -1,-0.3 1,-0.3 2,-0.1 0.335 96.5 132.1 79.4 -0.3 -8.9 -6.8 7.7 7 7 A S S < S- 0 0 46 -3,-2.4 17,-1.1 16,-0.2 -1,-0.3 -0.424 70.3 -80.8 -79.5 156.3 -7.3 -3.8 9.4 8 8 A R S S- 0 0 184 15,-0.2 2,-0.3 -2,-0.1 15,-0.2 -0.323 71.4-124.5 -58.1 131.3 -3.6 -3.7 10.4 9 9 A b + 0 0 16 3,-0.1 2,-0.1 1,-0.1 9,-0.1 -0.927 47.5 51.3-161.1 178.0 -2.9 -5.6 13.7 10 10 A X S S+ 0 0 87 -2,-0.3 -1,-0.1 7,-0.1 8,-0.1 0.768 108.9 4.6 -99.0-176.1 -2.2 -6.7 16.4 11 11 A X S S+ 0 0 157 2,-0.1 -2,-0.1 -2,-0.1 -3,-0.0 -0.566 121.1 75.4 -95.0 50.5 -2.8 -5.5 19.1 12 12 A V S S+ 0 0 51 -5,-0.1 -9,-2.1 -10,-0.1 -3,-0.1 0.764 70.9 106.8 -89.9 -31.6 -4.7 -2.9 17.1 13 13 A c B S-a 3 0A 21 -11,-0.2 -9,-0.2 -6,-0.1 3,-0.1 0.024 73.4-100.5 -53.6 157.2 -7.8 -5.1 16.3 14 14 A a > - 0 0 25 -11,-2.1 3,-2.3 1,-0.2 2,-0.5 -0.108 59.4 -64.7 -69.2 169.2 -11.2 -4.8 17.7 15 15 A M T 3 S+ 0 0 180 1,-0.3 -1,-0.2 -13,-0.0 3,-0.1 -0.466 130.0 21.0 -64.3 111.1 -12.6 -7.1 20.4 16 16 A G T 3 S+ 0 0 8 -2,-0.5 11,-2.9 1,-0.4 12,-0.4 0.124 106.7 98.8 115.4 -15.3 -12.7 -10.6 18.8 17 17 A L B < +B 26 0B 27 -3,-2.3 -1,-0.4 9,-0.2 9,-0.2 -0.803 37.5 162.9-106.0 145.5 -10.2 -9.8 16.1 18 18 A M - 0 0 65 7,-2.1 7,-0.4 -2,-0.3 2,-0.4 -0.190 44.5 -78.6-130.2-140.2 -6.4 -10.6 16.0 19 19 A b - 0 0 13 5,-0.2 2,-2.1 -2,-0.1 5,-0.2 -0.930 10.9-152.6-148.6 124.6 -4.2 -10.6 12.8 20 20 A S S S- 0 0 39 3,-2.8 4,-0.1 -2,-0.4 0, 0.0 -0.539 91.1 -56.5 -85.2 67.8 -3.6 -13.0 9.9 21 21 A R S S- 0 0 253 -2,-2.1 -1,-0.2 1,-0.2 3,-0.1 0.471 129.5 -12.6 69.6 5.6 -0.1 -11.6 9.5 22 22 A G S S+ 0 0 30 1,-0.4 2,-0.4 -15,-0.1 -1,-0.2 0.439 119.7 78.6 150.8 5.7 -1.4 -8.1 9.1 23 23 A K S S- 0 0 113 -15,-0.2 -3,-2.8 -20,-0.0 -1,-0.4 -0.998 80.9-106.9-137.9 131.3 -5.2 -8.1 8.6 24 24 A c + 0 0 3 -17,-1.1 -18,-1.8 -20,-0.4 2,-0.3 -0.292 41.4 172.8 -63.1 142.1 -7.8 -8.6 11.3 25 25 A V - 0 0 39 -7,-0.4 -7,-2.1 -20,-0.2 2,-0.2 -0.985 42.1 -89.6-148.9 143.6 -9.6 -11.9 11.4 26 26 A S B > -B 17 0B 44 -2,-0.3 4,-2.9 -9,-0.2 3,-0.4 -0.378 26.1-147.1 -59.9 121.5 -12.0 -13.4 13.9 27 27 A I T 4 S+ 0 0 73 -11,-2.9 -1,-0.2 1,-0.2 -10,-0.1 0.802 97.6 66.0 -58.0 -32.1 -10.1 -15.3 16.6 28 28 A Y T 4 S+ 0 0 159 -12,-0.4 -1,-0.2 2,-0.2 -11,-0.1 0.939 111.2 31.4 -56.1 -54.1 -13.1 -17.6 16.7 29 29 A G T 4 0 0 74 -3,-0.4 -2,-0.2 1,-0.3 -1,-0.2 0.931 360.0 360.0 -71.0 -48.0 -12.5 -18.8 13.2 30 30 A E < 0 0 124 -4,-2.9 -1,-0.3 0, 0.0 -12,-0.2 -0.839 360.0 360.0-156.5 360.0 -8.7 -18.4 13.5