==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSPORT PROTEIN 17-MAY-00 1F0Z . COMPND 2 MOLECULE: THIS PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR C.WANG,J.XI,T.P.BEGLEY,L.K.NICHOLSON . 66 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4282.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 75.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 4 6.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 16.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 12 18.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 10.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 13.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 49 0, 0.0 11,-0.5 0, 0.0 2,-0.3 0.000 360.0 360.0 360.0 166.6 -13.4 2.7 -0.7 2 2 A Q - 0 0 89 9,-0.3 52,-4.0 50,-0.1 53,-1.5 -0.964 360.0-179.2-144.0 158.0 -10.7 5.2 -1.5 3 3 A I E -Ab 10 55A 4 7,-2.1 7,-2.6 -2,-0.3 2,-0.5 -0.919 28.6-119.9-145.0 176.3 -7.0 5.6 -0.9 4 4 A L E -Ab 9 56A 26 51,-3.4 53,-2.5 -2,-0.3 2,-0.8 -0.926 24.6-171.3-125.2 107.7 -4.1 7.8 -1.5 5 5 A F E S- b 0 57A 17 3,-4.0 3,-0.3 -2,-0.5 53,-0.2 -0.825 77.1 -24.9-102.3 104.9 -1.3 6.2 -3.3 6 6 A N S S- 0 0 67 51,-1.6 -1,-0.3 -2,-0.8 52,-0.2 0.990 129.7 -45.1 57.8 58.3 1.8 8.4 -3.4 7 7 A D S S+ 0 0 125 50,-0.7 2,-0.6 -3,-0.3 -1,-0.3 0.703 119.1 122.1 57.6 19.5 -0.3 11.5 -2.9 8 8 A Q - 0 0 110 -3,-0.3 -3,-4.0 49,-0.2 -1,-0.2 -0.924 60.1-136.1-112.0 118.2 -2.6 10.1 -5.6 9 9 A A E +A 4 0A 72 -2,-0.6 2,-0.3 -5,-0.3 -5,-0.3 -0.375 32.9 169.2 -71.5 151.0 -6.2 9.5 -4.6 10 10 A M E -A 3 0A 45 -7,-2.6 -7,-2.1 45,-0.1 2,-0.4 -0.969 33.1-132.0-150.7 172.6 -7.9 6.2 -5.6 11 11 A Q + 0 0 154 -9,-0.3 -9,-0.3 -2,-0.3 2,-0.2 -0.964 42.2 139.8-135.5 117.3 -10.9 3.9 -5.2 12 12 A C - 0 0 19 -11,-0.5 2,-1.0 -2,-0.4 9,-0.1 -0.516 59.0 -48.7-134.5-158.8 -10.3 0.2 -4.5 13 13 A A > - 0 0 38 -2,-0.2 3,-2.2 7,-0.2 38,-0.2 -0.709 54.0-138.3 -87.5 101.3 -11.6 -2.7 -2.4 14 14 A A T 3 S+ 0 0 54 -2,-1.0 38,-0.2 1,-0.3 3,-0.1 -0.271 91.0 30.0 -56.4 138.8 -12.0 -1.6 1.2 15 15 A G T 3 S+ 0 0 29 36,-3.3 2,-0.5 1,-0.3 -1,-0.3 0.256 90.1 124.6 93.6 -12.6 -10.8 -4.3 3.5 16 16 A Q < - 0 0 10 -3,-2.2 35,-1.0 34,-0.2 -1,-0.3 -0.666 62.0-126.3 -81.0 123.1 -8.3 -5.5 0.9 17 17 A T > - 0 0 10 -2,-0.5 4,-2.4 33,-0.3 33,-0.2 0.199 30.7 -94.0 -52.1-169.0 -4.7 -5.6 2.3 18 18 A V H >>S+ 0 0 0 28,-1.2 4,-3.0 31,-0.3 5,-0.7 0.966 131.7 52.1 -75.1 -54.4 -1.9 -3.8 0.6 19 19 A H H >5S+ 0 0 78 27,-2.0 4,-1.0 1,-0.3 -1,-0.2 0.881 117.9 43.6 -50.2 -27.0 -0.8 -6.9 -1.4 20 20 A E H >5S+ 0 0 83 26,-0.7 4,-2.0 3,-0.2 -2,-0.3 0.869 117.2 44.3 -84.3 -38.4 -4.5 -6.6 -2.1 21 21 A L H X5S+ 0 0 0 -4,-2.4 4,-3.5 25,-0.3 5,-0.3 0.990 117.8 42.4 -68.8 -59.3 -4.4 -2.8 -2.7 22 22 A L H X>S+ 0 0 7 -4,-3.0 5,-4.3 1,-0.2 4,-1.5 0.961 118.2 45.9 -52.2 -55.2 -1.2 -2.8 -4.8 23 23 A E H < S- D 0 39B 2 3,-1.9 3,-2.9 -2,-0.5 21,-0.2 -0.852 78.0 -5.4-104.7 135.8 -0.0 4.1 5.0 37 37 A N T 3 S- 0 0 99 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.797 131.8 -61.6 56.1 22.8 -1.6 6.7 7.3 38 38 A Q T 3 S+ 0 0 150 -3,-0.3 2,-0.8 1,-0.2 -1,-0.3 0.425 112.8 121.2 82.5 0.3 2.1 7.7 7.9 39 39 A Q E < -D 36 0B 85 -3,-2.9 -3,-1.9 2,-0.0 2,-0.7 -0.804 59.2-143.0 -97.6 109.6 2.9 4.3 9.3 40 40 A I E -D 35 0B 106 -2,-0.8 -5,-0.3 -5,-0.3 17,-0.0 -0.563 23.4-166.7 -72.8 113.8 5.7 2.7 7.2 41 41 A V E -D 34 0B 1 -7,-1.7 -7,-0.9 -2,-0.7 2,-0.5 -0.791 25.3-107.6-103.6 148.2 5.0 -1.0 7.1 42 42 A P >> - 0 0 67 0, 0.0 3,-2.8 0, 0.0 4,-0.6 -0.567 32.8-117.4 -75.1 122.8 7.2 -3.7 6.0 43 43 A R H >> S+ 0 0 121 -2,-0.5 3,-2.2 1,-0.3 4,-0.6 0.741 110.1 67.2 -21.0 -59.3 6.2 -5.1 2.6 44 44 A E H >4 S+ 0 0 112 1,-0.3 3,-1.5 2,-0.2 4,-0.3 0.877 96.6 55.4 -39.6 -46.9 5.6 -8.5 4.0 45 45 A Q H X> S+ 0 0 85 -3,-2.8 3,-3.8 1,-0.3 4,-1.8 0.841 83.3 84.8 -60.0 -31.9 2.6 -7.1 6.0 46 46 A W H << S+ 0 0 1 -3,-2.2 -27,-2.0 -4,-0.6 -28,-1.2 0.835 88.6 55.2 -39.9 -33.6 1.0 -5.8 2.8 47 47 A A T << S+ 0 0 46 -3,-1.5 -1,-0.3 -4,-0.6 -30,-0.2 0.737 122.3 25.4 -76.3 -19.5 -0.4 -9.3 2.5 48 48 A Q T <4 S+ 0 0 152 -3,-3.8 2,-1.3 -4,-0.3 -2,-0.2 0.239 96.2 102.1-124.4 10.3 -2.0 -9.1 6.0 49 49 A H < - 0 0 25 -4,-1.8 -31,-0.3 -5,-0.1 -29,-0.1 -0.595 66.3-152.4 -95.0 74.6 -2.3 -5.3 6.2 50 50 A I - 0 0 90 -2,-1.3 -33,-0.3 -33,-0.2 2,-0.2 -0.211 11.0-138.4 -51.5 128.3 -6.0 -5.0 5.4 51 51 A V - 0 0 1 -35,-1.0 -36,-3.3 -38,-0.2 2,-0.3 -0.607 13.9-148.4 -89.8 148.3 -6.6 -1.6 3.8 52 52 A Q > - 0 0 124 -38,-0.2 3,-1.4 -2,-0.2 -50,-0.1 -0.909 35.3 -82.9-120.4 150.2 -9.7 0.6 4.7 53 53 A D T 3 S+ 0 0 109 -2,-0.3 -50,-0.2 1,-0.3 3,-0.1 -0.217 127.1 38.3 -48.6 111.4 -11.8 3.1 2.7 54 54 A G T 3 S+ 0 0 46 -52,-4.0 2,-0.4 1,-0.2 -1,-0.3 0.462 84.3 174.3 116.1 12.3 -9.6 6.1 3.0 55 55 A D E < -b 3 0A 3 -53,-1.5 -51,-3.4 -3,-1.4 2,-0.3 -0.304 14.2-160.2 -54.0 111.5 -6.4 4.0 2.7 56 56 A Q E -b 4 0A 81 -2,-0.4 2,-0.4 -53,-0.3 -51,-0.2 -0.694 12.3-171.7 -93.2 144.3 -3.5 6.5 2.6 57 57 A I E -b 5 0A 0 -53,-2.5 -51,-1.6 -2,-0.3 -50,-0.7 -0.992 19.7-158.7-140.7 148.2 -0.2 5.2 1.1 58 58 A L - 0 0 64 -2,-0.4 -23,-0.6 -23,-0.3 2,-0.5 -0.912 20.5-138.5-118.9 144.4 3.5 6.2 0.7 59 59 A L E -C 34 0B 60 -2,-0.4 2,-0.4 -25,-0.2 -25,-0.2 -0.903 17.3-174.7-111.6 126.2 5.7 4.7 -2.0 60 60 A F E -C 33 0B 70 -27,-3.5 -27,-1.3 -2,-0.5 2,-0.6 -0.917 20.8-133.8-114.7 139.0 9.4 3.7 -1.4 61 61 A Q E -C 32 0B 161 -2,-0.4 3,-0.2 -29,-0.2 -29,-0.2 -0.789 69.0 -24.1 -94.2 124.4 11.7 2.4 -4.1 62 62 A V S S- 0 0 87 -31,-2.5 2,-1.1 -2,-0.6 -29,-0.2 0.398 83.3 -87.7 57.0 153.8 13.8 -0.7 -3.2 63 63 A I + 0 0 100 -31,-0.1 2,-0.5 -3,-0.0 -1,-0.1 -0.778 64.4 157.5 -97.5 95.2 14.5 -1.5 0.5 64 64 A A + 0 0 86 -2,-1.1 2,-0.4 -3,-0.2 -3,-0.1 -0.967 11.3 169.2-125.2 124.1 17.7 0.4 1.1 65 65 A G 0 0 83 -2,-0.5 -2,-0.0 0, 0.0 0, 0.0 -0.994 360.0 360.0-134.7 135.9 18.9 1.5 4.6 66 66 A G 0 0 156 -2,-0.4 -2,-0.0 0, 0.0 0, 0.0 -0.666 360.0 360.0 114.1 360.0 22.3 3.0 5.6