==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 08-OCT-98 1F2G . COMPND 2 MOLECULE: FERREDOXIN II; . SOURCE 2 ORGANISM_SCIENTIFIC: DESULFOVIBRIO GIGAS; . AUTHOR B.J.GOODFELLOW,A.L.MACEDO,P.RODRIGUES,V.WRAY,I.MOURA, . 58 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4003.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 43.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 10.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 10 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 91 0, 0.0 57,-0.1 0, 0.0 36,-0.1 0.000 360.0 360.0 360.0 161.5 -5.1 6.2 7.1 2 2 A I - 0 0 15 33,-0.3 2,-0.4 55,-0.1 55,-0.2 -0.164 360.0-162.0 -51.2 143.0 -4.8 3.6 4.4 3 3 A E B -A 56 0A 70 53,-2.3 53,-2.5 29,-0.0 55,-0.2 -0.989 27.0-160.5-135.2 142.9 -3.7 0.2 5.7 4 4 A V > - 0 0 6 -2,-0.4 4,-0.6 1,-0.3 51,-0.2 0.143 45.4-132.7-103.9 15.7 -2.3 -2.9 4.0 5 5 A N T 4 - 0 0 79 1,-0.1 -1,-0.3 2,-0.1 26,-0.1 -0.040 20.6 -94.1 60.3-169.8 -3.3 -5.0 7.0 6 6 A D T 4 S+ 0 0 116 -3,-0.1 -1,-0.1 24,-0.1 48,-0.0 0.632 115.8 72.1-112.1 -28.4 -0.8 -7.5 8.5 7 7 A D T 4 S+ 0 0 149 47,-0.1 -2,-0.1 45,-0.1 47,-0.0 0.728 79.3 106.2 -60.2 -21.5 -1.8 -10.6 6.5 8 8 A C < - 0 0 23 -4,-0.6 -4,-0.0 46,-0.1 -3,-0.0 -0.118 55.4-164.3 -55.8 158.0 -0.1 -8.8 3.6 9 9 A M - 0 0 165 21,-0.1 -1,-0.1 0, 0.0 22,-0.1 0.718 42.1 -83.4-108.6 -84.6 3.3 -10.1 2.5 10 10 A A + 0 0 46 20,-0.1 20,-0.1 14,-0.0 14,-0.0 0.084 58.8 151.0 168.0 59.6 5.4 -7.9 0.3 11 11 A C - 0 0 99 1,-0.1 -3,-0.0 20,-0.0 19,-0.0 0.800 43.4-147.4 -72.1 -29.8 4.4 -8.1 -3.3 12 12 A E > + 0 0 70 3,-0.0 4,-1.6 11,-0.0 5,-0.1 0.635 62.2 123.9 70.1 14.0 5.6 -4.5 -3.7 13 13 A A H > S+ 0 0 28 2,-0.2 4,-0.8 1,-0.2 5,-0.2 0.940 73.0 46.0 -69.0 -49.3 2.9 -4.2 -6.4 14 14 A C H > S+ 0 0 12 1,-0.3 4,-3.1 2,-0.2 8,-0.3 0.825 114.8 50.1 -61.9 -31.6 1.2 -1.3 -4.7 15 15 A V H 4 S+ 0 0 7 1,-0.2 -1,-0.3 2,-0.2 -2,-0.2 0.799 108.6 51.2 -75.4 -30.6 4.7 0.1 -4.3 16 16 A E H < S+ 0 0 133 -4,-1.6 -2,-0.2 2,-0.2 -1,-0.2 0.563 117.9 40.1 -81.3 -10.0 5.3 -0.5 -8.0 17 17 A I H < S+ 0 0 53 -4,-0.8 -2,-0.2 -3,-0.2 -3,-0.2 0.782 139.4 3.9-103.1 -43.1 2.1 1.3 -8.7 18 18 A a >X + 0 0 8 -4,-3.1 4,-2.3 4,-0.2 3,-1.6 -0.660 59.7 170.9-148.7 84.3 2.3 4.1 -6.2 19 19 A P T 34 S+ 0 0 80 0, 0.0 -4,-0.1 0, 0.0 -3,-0.1 0.395 81.2 66.2 -75.0 4.0 5.6 4.2 -4.2 20 20 A D T 34 S+ 0 0 118 15,-0.0 3,-0.1 3,-0.0 -5,-0.1 0.518 111.4 31.0 -99.1 -10.8 4.4 7.5 -2.9 21 21 A V T <4 S+ 0 0 0 -3,-1.6 13,-2.3 1,-0.3 14,-1.2 0.661 130.6 29.3-114.0 -34.1 1.5 6.0 -1.1 22 22 A F E < +B 33 0B 0 -4,-2.3 -1,-0.3 -8,-0.3 2,-0.3 -0.977 68.1 168.1-136.3 121.1 3.0 2.6 -0.2 23 23 A E E -B 32 0B 90 9,-2.9 9,-2.6 -2,-0.4 5,-0.0 -0.899 41.5 -86.4-129.6 158.3 6.7 1.8 0.3 24 24 A M E -B 31 0B 69 -2,-0.3 7,-0.2 7,-0.2 -14,-0.0 -0.275 44.6-119.1 -62.3 146.7 8.7 -1.1 1.7 25 25 A N - 0 0 75 5,-1.8 -1,-0.1 1,-0.1 6,-0.1 0.503 54.9 -64.7 -60.9-144.9 9.2 -1.2 5.4 26 26 A E S S+ 0 0 164 1,-0.1 -1,-0.1 0, 0.0 -2,-0.1 0.728 139.4 11.2 -81.5 -24.6 12.7 -1.1 6.9 27 27 A E S S- 0 0 159 3,-0.1 -1,-0.1 0, 0.0 -3,-0.0 0.235 109.4-105.5-133.8 5.9 13.5 -4.5 5.3 28 28 A G S S+ 0 0 25 2,-0.2 3,-0.1 1,-0.1 -4,-0.0 0.716 81.4 132.4 72.5 22.1 10.5 -4.8 3.0 29 29 A D S S+ 0 0 133 1,-0.2 2,-0.3 -5,-0.0 -1,-0.1 0.499 78.0 13.1 -80.5 -4.8 9.1 -7.4 5.4 30 30 A K S S- 0 0 69 -20,-0.1 -5,-1.8 -7,-0.0 2,-0.7 -0.946 87.6 -98.7-167.8 148.6 5.8 -5.5 5.1 31 31 A A E -B 24 0B 12 -2,-0.3 -27,-0.3 -7,-0.2 2,-0.3 -0.648 42.3-159.1 -77.3 111.7 4.2 -2.8 3.0 32 32 A V E -B 23 0B 48 -9,-2.6 -9,-2.9 -2,-0.7 2,-0.2 -0.692 14.7-120.7 -93.8 145.7 4.6 0.5 4.9 33 33 A V E +B 22 0B 43 -2,-0.3 -11,-0.2 -11,-0.2 -12,-0.1 -0.599 30.3 171.8 -85.6 145.8 2.4 3.5 4.3 34 34 A I S S+ 0 0 65 -13,-2.3 -12,-0.2 -2,-0.2 -13,-0.2 0.610 76.2 46.4-120.7 -33.5 3.9 6.8 3.2 35 35 A N > + 0 0 48 -14,-1.2 3,-1.4 1,-0.1 2,-0.9 -0.745 60.0 175.8-116.7 80.8 0.8 8.8 2.4 36 36 A P T 3 S+ 0 0 75 0, 0.0 -1,-0.1 0, 0.0 -15,-0.1 -0.034 88.1 28.6 -75.0 35.1 -1.6 8.2 5.3 37 37 A D T 3 S+ 0 0 130 -2,-0.9 -16,-0.0 -36,-0.1 0, 0.0 0.117 84.7 160.3 175.2 42.7 -3.9 10.7 3.5 38 38 A S < - 0 0 17 -3,-1.4 -17,-0.0 -17,-0.1 3,-0.0 0.304 29.1-153.9 -58.9-162.9 -3.2 10.5 -0.2 39 39 A D + 0 0 153 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 0.068 55.4 99.7-170.6 32.9 -5.7 11.8 -2.8 40 40 A L S > S- 0 0 69 1,-0.0 3,-0.9 0, 0.0 4,-0.1 -0.767 78.6-115.5-123.7 169.1 -5.0 9.8 -5.9 41 41 A D T >> S+ 0 0 88 -2,-0.3 3,-2.0 1,-0.2 4,-2.0 0.456 93.3 100.2 -82.0 -1.7 -6.5 6.8 -7.6 42 42 A a H 3> S+ 0 0 15 1,-0.3 4,-2.9 2,-0.2 -1,-0.2 0.801 77.7 58.9 -52.5 -29.1 -3.2 5.0 -6.9 43 43 A V H <> S+ 0 0 11 -3,-0.9 4,-0.9 2,-0.2 -1,-0.3 0.805 104.0 50.2 -69.9 -30.2 -5.2 3.5 -4.1 44 44 A E H <> S+ 0 0 118 -3,-2.0 4,-2.2 2,-0.2 -2,-0.2 0.875 119.8 34.6 -74.3 -39.8 -7.7 2.2 -6.6 45 45 A E H X S+ 0 0 64 -4,-2.0 4,-2.2 2,-0.2 -2,-0.2 0.750 115.4 57.1 -84.4 -27.6 -4.9 0.6 -8.7 46 46 A A H < S+ 0 0 0 -4,-2.9 -2,-0.2 -5,-0.3 -3,-0.2 0.733 115.6 38.4 -73.8 -23.4 -2.8 -0.2 -5.7 47 47 A I H >< S+ 0 0 27 -4,-0.9 3,-0.6 -5,-0.2 6,-0.3 0.888 118.3 45.5 -90.5 -50.8 -5.7 -2.2 -4.3 48 48 A D H 3< S+ 0 0 132 -4,-2.2 -3,-0.2 1,-0.3 -2,-0.2 0.945 113.8 49.5 -57.2 -51.8 -7.0 -3.7 -7.6 49 49 A S T 3< S+ 0 0 67 -4,-2.2 -1,-0.3 -5,-0.1 -3,-0.2 0.682 96.9 89.1 -61.2 -17.3 -3.4 -4.6 -8.6 50 50 A C < - 0 0 16 -3,-0.6 3,-0.4 1,-0.2 5,-0.1 -0.770 57.9-173.4 -88.1 113.6 -3.2 -6.1 -5.1 51 51 A P S S+ 0 0 110 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.779 88.8 53.6 -75.0 -28.6 -4.4 -9.7 -5.2 52 52 A A S S- 0 0 69 -3,-0.1 -2,-0.1 1,-0.0 -45,-0.1 0.538 93.6-151.4 -81.3 -7.9 -4.2 -10.0 -1.4 53 53 A E + 0 0 112 -3,-0.4 -6,-0.1 -6,-0.3 -5,-0.1 0.834 45.2 146.2 36.2 45.4 -6.4 -6.9 -1.3 54 54 A A + 0 0 3 -7,-0.1 2,-0.4 -50,-0.1 -1,-0.2 0.587 42.9 92.9 -82.7 -12.3 -4.7 -6.1 2.0 55 55 A I + 0 0 3 -51,-0.2 2,-0.3 -9,-0.1 -51,-0.2 -0.718 53.3 162.5 -86.9 129.1 -5.0 -2.5 1.1 56 56 A V B -A 3 0A 61 -53,-2.5 -53,-2.3 -2,-0.4 2,-0.6 -0.981 48.7-121.2-145.5 153.2 -8.1 -0.8 2.5 57 57 A R 0 0 174 -2,-0.3 -55,-0.1 -55,-0.2 -53,-0.1 -0.211 360.0 360.0 -87.7 43.2 -9.3 2.8 3.2 58 58 A S 0 0 121 -2,-0.6 -1,-0.2 -55,-0.2 -56,-0.1 0.341 360.0 360.0 -43.5 360.0 -9.7 2.0 6.8