==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 17-NOV-05 2F2I . COMPND 2 MOLECULE: KALATA-B1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.J.CLARK,N.L.DALY,D.J.CRAIK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2189.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 55.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 31.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 37 0, 0.0 22,-0.2 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 -43.1 4.5 0.2 -3.3 2 2 A G + 0 0 38 20,-1.2 21,-0.1 1,-0.2 27,-0.0 0.503 360.0 142.2 71.9 3.3 1.6 1.1 -5.6 3 3 A E E -A 22 0A 35 19,-0.6 19,-1.2 18,-0.1 2,-0.3 0.055 44.8-128.3 -65.2-179.1 -0.1 -2.2 -4.5 4 4 A T E -A 21 0A 100 17,-0.3 2,-0.4 5,-0.1 17,-0.3 -0.943 13.1-151.1-133.3 152.5 -3.8 -2.7 -3.9 5 5 A b - 0 0 5 15,-1.5 2,-1.4 -2,-0.3 5,-0.1 -0.989 15.7-142.0-132.1 137.6 -5.6 -4.2 -1.0 6 6 A V S S- 0 0 139 3,-0.4 4,-0.1 -2,-0.4 15,-0.0 -0.527 97.3 -29.4 -92.5 65.9 -8.9 -6.1 -0.8 7 7 A G S S- 0 0 74 -2,-1.4 -1,-0.2 1,-0.1 12,-0.1 0.166 132.6 -34.6 109.7 -16.4 -9.9 -4.6 2.5 8 8 A G S S+ 0 0 40 1,-0.2 2,-0.7 12,-0.1 9,-0.3 0.411 93.3 133.1 146.6 4.0 -6.4 -4.0 3.9 9 9 A T - 0 0 101 7,-0.1 -3,-0.4 11,-0.0 2,-0.3 -0.749 29.6-177.1 -89.3 117.4 -4.2 -6.9 2.7 10 10 A c - 0 0 39 -2,-0.7 -5,-0.1 1,-0.1 7,-0.1 -0.763 21.3-150.2-109.7 155.2 -0.9 -5.8 1.3 11 11 A N S S+ 0 0 136 -2,-0.3 -1,-0.1 -7,-0.1 -6,-0.0 0.935 79.5 63.6 -88.0 -61.0 1.9 -7.9 -0.2 12 12 A T S > S- 0 0 58 1,-0.1 3,-2.2 2,-0.1 2,-0.2 -0.543 91.8-118.6 -71.9 118.7 5.1 -6.1 0.5 13 13 A P T 3 S+ 0 0 110 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.370 101.1 35.7 -59.6 121.2 5.7 -6.0 4.3 14 14 A G T 3 S+ 0 0 48 1,-0.4 2,-0.6 -2,-0.2 11,-0.3 0.166 85.5 119.0 117.6 -13.8 5.8 -2.3 5.3 15 15 A a < - 0 0 12 -3,-2.2 2,-0.4 9,-0.1 -1,-0.4 -0.758 54.9-146.9 -88.8 119.2 3.2 -1.2 2.8 16 16 A T E -B 23 0A 89 7,-2.5 7,-3.2 -2,-0.6 2,-0.4 -0.723 15.0-123.2 -90.0 132.1 0.2 0.3 4.6 17 17 A b E +B 22 0A 36 -2,-0.4 2,-0.3 -9,-0.3 5,-0.3 -0.609 41.1 157.6 -78.9 127.4 -3.2 -0.1 3.0 18 18 A S E > -B 21 0A 53 3,-3.3 3,-1.4 -2,-0.4 -13,-0.1 -0.951 68.0 -3.6-151.9 126.6 -5.1 3.1 2.3 19 19 A W T 3 S- 0 0 248 -2,-0.3 3,-0.1 1,-0.3 -1,-0.0 0.899 129.3 -58.1 55.7 43.6 -7.9 3.6 -0.3 20 20 A D T 3 S+ 0 0 101 1,-0.2 -15,-1.5 -16,-0.1 2,-0.4 0.669 124.4 98.1 59.7 22.1 -7.5 0.0 -1.4 21 21 A K E < S-AB 4 18A 84 -3,-1.4 -3,-3.3 -17,-0.3 2,-0.6 -0.992 73.9-123.6-138.2 143.3 -3.9 0.8 -2.3 22 22 A c E -AB 3 17A 0 -19,-1.2 -20,-1.2 -2,-0.4 -19,-0.6 -0.782 31.3-177.8 -93.8 122.3 -0.7 0.2 -0.3 23 23 A T E - B 0 16A 30 -7,-3.2 -7,-2.5 -2,-0.6 2,-0.3 -0.605 9.8-154.7-109.2 170.2 1.5 3.2 0.4 24 24 A R B > S+C 27 0B 85 3,-3.4 3,-1.5 -9,-0.2 5,-0.2 -0.987 71.6 3.9-150.9 138.2 4.8 3.5 2.2 25 25 A N T 3 S- 0 0 140 -2,-0.3 -10,-0.1 -11,-0.3 -1,-0.0 0.720 132.4 -56.6 60.0 23.1 6.5 6.4 4.0 26 26 A G T 3 S+ 0 0 79 1,-0.2 -1,-0.3 -10,-0.0 -3,-0.0 0.670 124.6 79.9 83.6 19.6 3.3 8.4 3.5 27 27 A L B < S-C 24 0B 89 -3,-1.5 -3,-3.4 0, 0.0 2,-2.4 -0.992 93.8 -90.7-154.8 153.5 3.3 8.0 -0.3 28 28 A P 0 0 98 0, 0.0 -5,-0.2 0, 0.0 -3,-0.1 -0.389 360.0 360.0 -67.3 75.0 2.4 5.5 -3.0 29 29 A V 0 0 85 -2,-2.4 -6,-0.1 -5,-0.2 -4,-0.0 0.861 360.0 360.0 -87.6 360.0 5.8 3.8 -3.2