==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 17-NOV-05 2F2J . COMPND 2 MOLECULE: KALATA-B1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.J.CLARK,N.L.DALY,D.J.CRAIK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2095.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 62.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 23 0, 0.0 2,-0.7 0, 0.0 22,-0.1 0.000 360.0 360.0 360.0 -40.1 3.1 -1.4 -3.9 2 2 A G + 0 0 46 20,-0.7 21,-0.1 1,-0.2 27,-0.0 -0.121 360.0 115.5 82.6 -40.1 0.0 -1.7 -6.0 3 3 A E - 0 0 72 -2,-0.7 19,-2.7 18,-0.1 2,-0.3 -0.066 61.5-125.7 -59.9 163.0 -1.7 -4.0 -3.6 4 4 A T - 0 0 61 17,-0.3 2,-0.7 -3,-0.1 7,-0.3 -0.827 14.4-119.6-111.9 151.9 -4.8 -3.1 -1.7 5 5 A b - 0 0 23 13,-0.3 2,-1.5 -2,-0.3 3,-0.5 -0.817 14.7-159.2 -96.4 114.9 -5.5 -3.2 2.0 6 6 A V S S- 0 0 126 3,-0.7 -1,-0.1 -2,-0.7 4,-0.1 -0.373 90.4 -14.1 -87.4 55.1 -8.4 -5.5 2.9 7 7 A G S S- 0 0 69 -2,-1.5 -1,-0.3 2,-0.1 3,-0.1 0.714 129.8 -49.3 115.9 42.8 -9.0 -3.8 6.2 8 8 A G S S+ 0 0 53 -3,-0.5 2,-0.4 1,-0.2 9,-0.2 0.795 109.5 119.4 69.8 30.2 -5.9 -1.7 6.7 9 9 A T - 0 0 89 7,-0.1 -3,-0.7 13,-0.0 2,-0.4 -0.979 40.9-171.0-129.8 140.0 -3.6 -4.5 6.0 10 10 A c - 0 0 31 -2,-0.4 4,-0.2 -5,-0.2 5,-0.1 -0.996 19.1-158.0-135.4 132.3 -1.0 -4.9 3.3 11 11 A N S S+ 0 0 134 -2,-0.4 -1,-0.1 -7,-0.3 3,-0.1 0.832 71.2 96.1 -73.6 -35.5 1.0 -7.9 2.2 12 12 A T S > S- 0 0 30 1,-0.1 3,-2.2 2,-0.1 -2,-0.1 -0.403 90.4-106.8 -61.6 121.8 3.7 -5.8 0.6 13 13 A P T 3 S+ 0 0 116 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.281 98.7 2.2 -56.2 125.5 6.6 -5.4 3.1 14 14 A G T 3 S+ 0 0 49 1,-0.2 2,-0.7 -4,-0.2 11,-0.6 0.550 94.9 137.6 75.2 8.5 6.7 -1.9 4.6 15 15 A a E < -A 24 0A 13 -3,-2.2 2,-0.3 9,-0.2 9,-0.2 -0.787 43.8-148.6 -93.3 117.3 3.7 -0.8 2.6 16 16 A T E -A 23 0A 80 7,-2.8 7,-3.1 -2,-0.7 10,-0.1 -0.602 26.9-104.7 -81.7 138.7 1.3 1.3 4.7 17 17 A b E +A 22 0A 55 -2,-0.3 2,-0.2 -9,-0.2 5,-0.2 -0.400 52.8 159.9 -64.8 135.8 -2.4 1.0 3.8 18 18 A S E > -A 21 0A 40 3,-1.6 3,-1.2 -2,-0.1 2,-1.2 -0.719 53.6 -24.4-141.0-171.0 -3.7 4.0 2.0 19 19 A K T 3 S- 0 0 194 1,-0.3 3,-0.1 -2,-0.2 -2,-0.0 -0.173 123.3 -46.5 -46.7 83.2 -6.7 5.0 -0.3 20 20 A N T 3 S+ 0 0 113 -2,-1.2 2,-0.3 -15,-0.1 -1,-0.3 0.687 131.7 84.9 58.8 18.9 -7.4 1.5 -1.6 21 21 A K E < S-A 18 0A 79 -3,-1.2 -3,-1.6 -17,-0.1 2,-0.4 -0.997 77.7-123.1-150.5 145.4 -3.7 1.1 -2.2 22 22 A c E -A 17 0A 0 -19,-2.7 -20,-0.7 -2,-0.3 2,-0.4 -0.707 31.8-158.9 -88.7 134.6 -0.6 0.2 -0.2 23 23 A T E -A 16 0A 9 -7,-3.1 -7,-2.8 -2,-0.4 2,-1.2 -0.944 19.9-135.0-121.4 141.3 2.1 2.8 -0.2 24 24 A R E > S-AB 15 27A 109 3,-3.3 3,-1.9 -2,-0.4 -9,-0.2 -0.767 93.7 -34.6 -91.5 93.8 5.9 2.6 0.5 25 25 A N T 3 S- 0 0 137 -2,-1.2 -1,-0.2 -11,-0.6 -10,-0.1 0.852 130.6 -38.9 58.4 36.5 6.3 5.6 2.8 26 26 A G T 3 S+ 0 0 50 1,-0.2 -1,-0.3 -10,-0.1 -11,-0.0 0.081 113.7 120.2 103.3 -23.8 3.7 7.4 0.8 27 27 A L B < -B 24 0A 107 -3,-1.9 -3,-3.3 1,-0.1 2,-2.6 -0.672 58.4-145.5 -81.0 114.4 4.7 6.1 -2.6 28 28 A P 0 0 90 0, 0.0 -5,-0.2 0, 0.0 -1,-0.1 -0.326 360.0 360.0 -75.5 59.4 1.8 4.1 -4.2 29 29 A V 0 0 97 -2,-2.6 -6,-0.1 -28,-0.1 -14,-0.0 0.583 360.0 360.0-103.2 360.0 4.2 1.7 -5.9