==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 30-OCT-08 3F2U . COMPND 2 MOLECULE: CHROMOBOX PROTEIN HOMOLOG 1; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.F.AMAYA,M.RAVICHANDRAN,W.TEMPEL,A.K.WERNIMONT,P.LOPPNAU, . 51 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3737.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 70.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 16 31.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 15.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 13.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 115 0, 0.0 2,-0.5 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -37.3 7.0 -9.2 18.2 2 2 A E - 0 0 93 2,-0.0 2,-0.4 0, 0.0 0, 0.0 -0.788 360.0-177.7-101.7 128.9 8.6 -10.4 15.0 3 3 A Y - 0 0 151 -2,-0.5 2,-0.4 2,-0.0 23,-0.1 -0.980 2.2-174.1-127.9 131.9 9.4 -8.1 12.1 4 4 A V - 0 0 68 -2,-0.4 21,-2.9 21,-0.3 2,-0.5 -0.980 22.9-133.4-131.6 132.0 10.9 -9.2 8.8 5 5 A V E -A 24 0A 24 -2,-0.4 19,-0.2 19,-0.2 3,-0.1 -0.761 20.0-175.8 -80.3 126.3 12.1 -7.1 5.8 6 6 A E E + 0 0 81 17,-3.0 2,-0.3 -2,-0.5 18,-0.2 0.751 65.5 2.0 -92.6 -35.8 10.6 -8.7 2.6 7 7 A K E -A 23 0A 128 16,-1.2 16,-2.5 41,-0.0 2,-0.7 -0.980 56.1-132.5-158.8 140.7 12.4 -6.4 0.2 8 8 A V E +A 22 0A 9 37,-0.4 14,-0.2 -2,-0.3 3,-0.1 -0.887 30.7 176.5 -91.7 110.3 14.8 -3.5 -0.0 9 9 A L E - 0 0 65 12,-3.0 2,-0.3 -2,-0.7 -1,-0.2 0.817 53.9 -16.6 -88.0 -34.7 13.0 -1.1 -2.4 10 10 A D E -A 21 0A 75 11,-0.9 11,-2.6 2,-0.0 2,-0.3 -0.967 49.4-137.8-168.3 165.8 15.4 1.8 -2.5 11 11 A R E -A 20 0A 113 -2,-0.3 2,-0.3 9,-0.3 9,-0.2 -0.985 17.0-176.7-136.8 145.8 18.2 3.8 -0.9 12 12 A R E -A 19 0A 95 7,-2.6 7,-2.5 -2,-0.3 2,-0.5 -0.975 17.9-150.3-139.1 155.6 18.8 7.5 -0.3 13 13 A V E +A 18 0A 84 -2,-0.3 2,-0.5 5,-0.2 5,-0.2 -0.966 23.5 175.0-121.6 108.2 21.6 9.6 1.0 14 14 A V E > S-A 17 0A 61 3,-2.2 3,-2.1 -2,-0.5 -2,-0.1 -0.978 71.7 -14.3-121.5 127.9 20.3 12.6 2.7 15 15 A K T 3 S- 0 0 217 -2,-0.5 -1,-0.2 1,-0.3 3,-0.1 0.860 129.6 -56.5 46.4 43.3 22.6 15.0 4.5 16 16 A G T 3 S+ 0 0 65 1,-0.2 2,-0.6 -3,-0.1 -1,-0.3 0.313 110.5 122.7 77.7 -5.4 25.2 12.2 4.3 17 17 A K E < -A 14 0A 49 -3,-2.1 -3,-2.2 19,-0.0 2,-0.4 -0.780 55.8-140.1 -91.8 123.0 23.0 9.6 6.1 18 18 A V E +A 13 0A 32 -2,-0.6 19,-2.3 -5,-0.2 2,-0.3 -0.672 27.3 174.1 -80.6 130.2 22.3 6.4 4.2 19 19 A E E -AB 12 36A 38 -7,-2.5 -7,-2.6 -2,-0.4 2,-0.4 -0.977 18.1-147.0-134.7 150.2 18.7 5.1 4.5 20 20 A Y E -AB 11 35A 19 15,-2.4 15,-2.9 -2,-0.3 2,-0.6 -0.937 16.0-128.3-119.2 140.1 16.9 2.2 2.8 21 21 A L E -AB 10 34A 35 -11,-2.6 -12,-3.0 -2,-0.4 -11,-0.9 -0.791 34.4-161.7 -83.8 121.5 13.2 1.9 1.9 22 22 A L E -AB 8 33A 8 11,-2.7 11,-1.5 -2,-0.6 2,-0.5 -0.890 19.0-150.3-116.9 135.2 11.9 -1.4 3.4 23 23 A K E -A 7 0A 26 -16,-2.5 -17,-3.0 -2,-0.4 -16,-1.2 -0.882 27.6-143.2 -93.0 129.2 8.8 -3.4 2.6 24 24 A W E > -A 5 0A 50 -2,-0.5 3,-1.6 4,-0.3 -19,-0.2 -0.786 13.9-110.8-103.5 139.9 7.7 -5.3 5.8 25 25 A K T 3 S+ 0 0 113 -21,-2.9 -21,-0.3 -2,-0.4 3,-0.1 -0.362 103.3 11.4 -61.3 126.0 6.2 -8.8 6.1 26 26 A G T 3 S+ 0 0 77 1,-0.3 2,-0.3 -2,-0.1 -1,-0.2 0.621 110.3 100.6 81.1 11.2 2.5 -8.6 7.1 27 27 A F S < S- 0 0 88 -3,-1.6 -1,-0.3 1,-0.0 2,-0.0 -0.919 76.0-101.4-121.8 160.3 2.2 -4.9 6.5 28 28 A S > - 0 0 63 -2,-0.3 3,-1.6 1,-0.1 -4,-0.3 -0.313 28.9-115.3 -72.1 157.3 0.8 -2.9 3.6 29 29 A D G > S+ 0 0 114 1,-0.3 3,-1.5 2,-0.2 -1,-0.1 0.798 116.4 70.1 -58.3 -30.8 2.9 -1.3 1.0 30 30 A E G 3 S+ 0 0 87 1,-0.2 -1,-0.3 3,-0.0 -2,-0.0 0.713 95.0 54.8 -56.1 -24.6 1.5 1.9 2.5 31 31 A D G < S+ 0 0 89 -3,-1.6 -1,-0.2 -7,-0.1 -2,-0.2 0.146 72.4 136.4-103.9 20.2 3.7 1.3 5.7 32 32 A N < - 0 0 44 -3,-1.5 2,-0.4 -9,-0.1 -9,-0.2 -0.343 40.3-155.2 -56.6 144.0 7.1 0.9 4.0 33 33 A T E -B 22 0A 48 -11,-1.5 -11,-2.7 -13,-0.0 2,-0.5 -0.981 18.6-125.7-129.4 148.1 9.6 2.8 6.0 34 34 A W E -B 21 0A 80 -2,-0.4 -13,-0.2 -13,-0.2 -23,-0.1 -0.816 36.2-170.6 -86.0 125.7 13.0 4.5 5.4 35 35 A E E -B 20 0A 58 -15,-2.9 -15,-2.4 -2,-0.5 5,-0.1 -0.950 26.8-108.6-124.6 138.3 15.5 3.1 7.9 36 36 A P E >> -B 19 0A 55 0, 0.0 3,-0.9 0, 0.0 4,-0.5 -0.368 27.2-128.2 -62.9 142.9 19.1 4.2 8.7 37 37 A E G >4 S+ 0 0 95 -19,-2.3 3,-0.9 1,-0.2 -18,-0.1 0.749 95.1 84.7 -61.0 -28.8 21.7 1.7 7.4 38 38 A E G 34 S+ 0 0 98 -20,-0.3 -1,-0.2 1,-0.3 -19,-0.1 0.803 102.6 30.7 -42.6 -44.7 23.4 1.4 10.7 39 39 A N G <4 S+ 0 0 107 -3,-0.9 2,-2.3 1,-0.1 -1,-0.3 0.512 89.3 103.2 -92.3 -14.1 20.9 -1.4 11.8 40 40 A L << + 0 0 20 -3,-0.9 2,-1.6 -4,-0.5 -1,-0.1 -0.456 40.6 169.1 -75.8 75.7 20.1 -3.0 8.5 41 41 A D + 0 0 93 -2,-2.3 -1,-0.1 1,-0.1 -3,-0.1 -0.519 33.1 122.1 -85.3 68.3 22.2 -6.1 8.9 42 42 A C > + 0 0 45 -2,-1.6 4,-2.3 1,-0.1 5,-0.2 -0.701 28.9 169.1-141.8 77.3 20.7 -7.8 5.8 43 43 A P H > S+ 0 0 106 0, 0.0 4,-2.5 0, 0.0 5,-0.2 0.856 78.9 50.3 -67.1 -37.1 23.1 -8.9 3.0 44 44 A D H > S+ 0 0 85 1,-0.2 4,-1.7 2,-0.2 5,-0.1 0.906 115.6 45.1 -69.7 -40.6 20.8 -11.1 0.8 45 45 A L H > S+ 0 0 44 2,-0.2 4,-1.6 3,-0.1 -37,-0.4 0.885 115.2 45.9 -66.3 -42.2 18.2 -8.3 0.8 46 46 A I H X S+ 0 0 32 -4,-2.3 4,-3.3 2,-0.2 -2,-0.2 0.952 111.9 50.5 -70.2 -47.5 20.7 -5.5 0.1 47 47 A A H X S+ 0 0 51 -4,-2.5 4,-2.5 1,-0.2 -1,-0.2 0.869 106.6 56.9 -52.5 -45.9 22.5 -7.4 -2.7 48 48 A E H < S+ 0 0 62 -4,-1.7 -1,-0.2 -5,-0.2 -2,-0.2 0.935 110.3 44.6 -45.9 -51.5 19.0 -8.0 -4.2 49 49 A F H < S+ 0 0 52 -4,-1.6 -2,-0.2 1,-0.2 -1,-0.2 0.958 110.6 53.5 -66.3 -51.0 18.6 -4.2 -4.3 50 50 A L H < 0 0 110 -4,-3.3 -1,-0.2 -5,-0.1 -2,-0.2 0.875 360.0 360.0 -50.0 -42.8 22.1 -3.7 -5.7 51 51 A Q < 0 0 120 -4,-2.5 0, 0.0 -5,-0.2 0, 0.0 -0.273 360.0 360.0 -72.2 360.0 21.5 -6.1 -8.6