==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN/RNA 23-JUN-00 1F6U . COMPND 2 MOLECULE: HIV-1 NUCLEOCAPSID PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: HUMAN IMMUNODEFICIENCY VIRUS 1; . AUTHOR G.K.AMARASINGHE,R.N.DE GUZMAN,R.B.TURNER,K.J.CHANCELLOR, . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5424.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 49.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 9.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 12.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 13 23.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 213 0, 0.0 5,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -55.6 -31.7 12.5 8.8 2 2 A Q > - 0 0 147 1,-0.1 3,-1.5 3,-0.1 4,-0.4 -0.221 360.0-119.8 -61.7 153.1 -30.8 9.2 7.1 3 3 A K G > S+ 0 0 189 1,-0.3 3,-2.0 2,-0.2 4,-0.2 0.858 114.4 65.3 -61.7 -36.5 -33.4 7.4 5.0 4 4 A G G > S+ 0 0 46 1,-0.3 3,-2.2 2,-0.2 -1,-0.3 0.702 83.5 77.8 -58.8 -19.6 -33.1 4.5 7.4 5 5 A N G X S+ 0 0 86 -3,-1.5 3,-2.1 1,-0.3 -1,-0.3 0.858 81.0 65.8 -57.8 -36.6 -34.5 6.8 10.0 6 6 A F G X S+ 0 0 78 -3,-2.0 3,-2.2 -4,-0.4 -1,-0.3 0.635 76.9 87.4 -60.4 -13.4 -37.9 6.2 8.4 7 7 A R G X + 0 0 180 -3,-2.2 3,-2.5 1,-0.3 -1,-0.3 0.636 62.0 88.3 -61.1 -13.1 -37.4 2.7 9.6 8 8 A N G X + 0 0 105 -3,-2.1 3,-2.7 1,-0.3 -1,-0.3 0.670 63.9 86.0 -59.3 -15.6 -39.0 4.0 12.8 9 9 A Q G X + 0 0 94 -3,-2.2 3,-2.3 1,-0.3 -1,-0.3 0.778 69.2 76.5 -55.9 -27.5 -42.2 3.0 11.1 10 10 A R G < S+ 0 0 184 -3,-2.5 -1,-0.3 1,-0.3 -2,-0.2 0.738 109.5 28.5 -55.7 -23.0 -41.6 -0.4 12.6 11 11 A K G < S- 0 0 165 -3,-2.7 -1,-0.3 1,-0.2 -2,-0.2 -0.223 141.9 -61.2-131.7 41.3 -42.8 1.2 15.8 12 12 A T < - 0 0 54 -3,-2.3 -1,-0.2 10,-0.2 -2,-0.1 0.607 56.9-134.2 82.6 123.9 -45.1 3.8 14.4 13 13 A V - 0 0 13 -4,-0.3 9,-1.5 -3,-0.1 2,-0.5 -0.291 17.3-110.5 -97.3-175.2 -43.9 6.6 12.1 14 14 A K B -A 21 0A 161 7,-0.2 2,-0.6 8,-0.2 7,-0.2 -0.944 21.4-141.2-125.8 108.6 -44.6 10.3 12.2 15 15 A C > - 0 0 1 5,-3.0 4,-1.0 -2,-0.5 9,-0.1 -0.566 7.3-162.1 -70.4 115.3 -46.7 11.7 9.3 16 16 A F T 4 S+ 0 0 166 -2,-0.6 -1,-0.2 1,-0.2 8,-0.1 0.216 88.1 49.4 -82.7 14.9 -45.2 15.1 8.5 17 17 A N T 4 S+ 0 0 27 3,-0.2 -1,-0.2 0, 0.0 7,-0.0 0.729 129.3 12.3-114.5 -58.3 -48.5 15.9 6.8 18 18 A C T 4 S- 0 0 64 2,-0.1 -2,-0.1 1,-0.0 3,-0.1 0.731 93.3-133.3 -92.5 -29.0 -51.3 15.1 9.2 19 19 A G < + 0 0 40 -4,-1.0 -4,-0.2 1,-0.3 -3,-0.1 -0.106 62.9 128.0 100.8 -33.3 -48.9 14.7 12.1 20 20 A K - 0 0 132 -6,-0.2 -5,-3.0 1,-0.1 -1,-0.3 0.127 55.9-120.2 -46.5 171.3 -50.5 11.5 13.2 21 21 A E B S+A 14 0A 125 -7,-0.2 -7,-0.2 1,-0.1 -1,-0.1 -0.826 80.9 54.8-120.3 159.4 -48.3 8.5 13.8 22 22 A G S S+ 0 0 29 -9,-1.5 2,-0.3 -2,-0.3 -10,-0.2 -0.081 108.3 37.9 111.0 -30.8 -48.2 5.0 12.2 23 23 A H S S- 0 0 36 -10,-0.3 2,-0.3 -11,-0.1 -1,-0.2 -0.857 74.6-122.2-141.9 174.7 -47.9 6.2 8.7 24 24 A I > - 0 0 23 -2,-0.3 3,-2.7 3,-0.2 -9,-0.2 -0.842 30.1-110.0-122.1 159.2 -46.3 8.9 6.6 25 25 A A G > S+ 0 0 20 1,-0.3 3,-2.2 -2,-0.3 5,-0.1 0.869 111.4 78.5 -52.4 -39.6 -47.7 11.6 4.3 26 26 A K G 3 S+ 0 0 142 1,-0.3 -1,-0.3 -3,-0.0 -11,-0.0 0.764 120.1 10.9 -40.3 -28.1 -46.2 9.6 1.4 27 27 A N G < S+ 0 0 75 -3,-2.7 -1,-0.3 0, 0.0 -2,-0.2 -0.329 89.3 171.5-151.4 57.8 -49.2 7.5 2.0 28 28 A C < - 0 0 23 -3,-2.2 -3,-0.1 1,-0.1 -4,-0.0 -0.436 33.7-140.1 -72.3 146.1 -51.5 9.4 4.4 29 29 A R + 0 0 190 -2,-0.1 -1,-0.1 2,-0.1 -4,-0.1 0.141 54.8 139.8 -92.0 18.2 -55.0 8.0 4.9 30 30 A A - 0 0 28 1,-0.1 2,-2.5 -5,-0.1 -2,-0.1 -0.533 51.8-144.6 -68.3 113.2 -56.4 11.5 4.8 31 31 A P + 0 0 141 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.236 57.3 130.0 -75.0 51.0 -59.6 11.2 2.8 32 32 A R - 0 0 141 -2,-2.5 3,-0.1 1,-0.1 -2,-0.0 -0.779 46.5-164.3-108.1 152.3 -59.0 14.7 1.4 33 33 A K S S- 0 0 205 -2,-0.3 2,-0.2 1,-0.2 -1,-0.1 0.878 72.8 -29.0 -96.1 -58.7 -59.0 15.7 -2.3 34 34 A K S S+ 0 0 132 2,-0.0 9,-2.2 11,-0.0 2,-0.3 -0.782 75.1 139.8-167.5 117.8 -57.2 19.1 -2.2 35 35 A G E -B 42 0B 31 7,-0.3 2,-0.8 -2,-0.2 7,-0.3 -0.986 56.4 -91.1-159.0 155.8 -56.9 21.6 0.5 36 36 A C E >> -B 41 0B 3 5,-2.9 4,-1.7 -2,-0.3 5,-0.6 -0.616 33.0-177.2 -74.1 107.7 -54.4 24.0 2.1 37 37 A W T 45S+ 0 0 124 -2,-0.8 -1,-0.2 1,-0.2 8,-0.1 0.240 79.4 65.8 -88.4 12.0 -52.9 22.0 4.9 38 38 A K T 45S+ 0 0 97 3,-0.1 -1,-0.2 14,-0.0 -2,-0.1 0.782 123.0 8.4 -99.0 -39.0 -51.0 25.1 5.8 39 39 A C T 45S- 0 0 60 -3,-0.2 -2,-0.2 2,-0.1 3,-0.1 0.741 103.4-112.1-108.4 -43.3 -53.9 27.3 6.8 40 40 A G T <5S+ 0 0 55 -4,-1.7 2,-0.6 1,-0.3 -3,-0.2 0.631 70.1 132.5 113.3 27.3 -56.7 24.7 6.8 41 41 A K E > < -B 36 0B 133 -5,-0.6 -5,-2.9 3,-0.0 3,-0.9 -0.944 46.6-142.8-114.5 114.1 -58.8 26.0 3.9 42 42 A E E 3 S+B 35 0B 165 -2,-0.6 -7,-0.3 -7,-0.3 3,-0.1 -0.316 78.0 54.4 -71.3 155.9 -59.8 23.4 1.3 43 43 A G T 3 S+ 0 0 50 -9,-2.2 2,-0.2 1,-0.3 -1,-0.2 -0.071 108.4 44.8 110.5 -30.1 -59.9 24.2 -2.4 44 44 A H S < S- 0 0 31 -3,-0.9 -1,-0.3 -10,-0.0 2,-0.3 -0.693 74.6-124.2-132.2-176.2 -56.3 25.4 -2.5 45 45 A Q > - 0 0 85 -2,-0.2 3,-1.5 -9,-0.2 -9,-0.3 -0.809 32.3 -99.8-129.8 170.2 -52.9 24.4 -1.3 46 46 A M G > S+ 0 0 53 -11,-0.3 3,-2.9 1,-0.3 -10,-0.1 0.915 123.9 55.8 -54.7 -48.1 -50.0 25.8 0.7 47 47 A K G 3 S+ 0 0 153 1,-0.3 -1,-0.3 -3,-0.0 5,-0.0 0.674 117.4 38.7 -59.2 -15.9 -48.1 26.7 -2.5 48 48 A D G < S+ 0 0 109 -3,-1.5 -1,-0.3 3,-0.0 -2,-0.2 -0.070 89.3 141.1-123.7 29.0 -51.3 28.6 -3.3 49 49 A C < - 0 0 16 -3,-2.9 3,-0.4 1,-0.1 -3,-0.1 -0.407 47.8-147.0 -72.9 150.4 -52.0 29.8 0.2 50 50 A T S S+ 0 0 120 1,-0.2 2,-0.3 -2,-0.1 -1,-0.1 0.726 97.0 50.6 -88.3 -26.2 -53.4 33.4 0.6 51 51 A E + 0 0 149 2,-0.1 2,-1.2 1,-0.0 -1,-0.2 -0.454 69.6 144.9-109.8 56.6 -51.6 34.0 3.9 52 52 A R S S- 0 0 110 -3,-0.4 3,-0.1 -2,-0.3 -1,-0.0 -0.677 87.9 -68.2 -96.9 79.4 -48.1 32.9 2.8 53 53 A Q S S+ 0 0 130 -2,-1.2 2,-0.5 1,-0.2 -1,-0.1 0.860 95.2 145.6 38.3 49.1 -46.0 35.3 4.8 54 54 A A 0 0 72 -4,-0.1 -1,-0.2 1,-0.0 -2,-0.0 -0.971 360.0 360.0-121.0 119.4 -47.4 38.0 2.6 55 55 A N 0 0 223 -2,-0.5 -3,-0.1 -3,-0.1 -1,-0.0 0.021 360.0 360.0 -94.4 360.0 -48.0 41.5 4.0