==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 18-JUL-00 1FCL . COMPND 2 MOLECULE: IMMUNOGLOBULIN G BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP.; . AUTHOR S.A.ROSS,C.A.SARISKY,A.SU,S.L.MAYO . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3798.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 36 64.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 11 19.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 133 0, 0.0 2,-0.4 0, 0.0 49,-0.0 0.000 360.0 360.0 360.0 136.7 14.1 4.0 4.0 2 2 A T - 0 0 63 17,-0.1 17,-0.2 47,-0.1 21,-0.0 -0.946 360.0-120.0-121.4 140.5 10.7 2.2 4.4 3 3 A F E -A 18 0A 13 15,-1.9 15,-0.7 -2,-0.4 2,-0.3 -0.263 29.1-155.8 -70.5 163.2 7.8 2.1 1.8 4 4 A K E -A 17 0A 61 46,-1.8 2,-0.3 13,-0.2 13,-0.3 -0.995 13.1-175.5-142.9 149.9 4.4 3.4 2.8 5 5 A L E -A 16 0A 0 11,-3.0 11,-1.8 -2,-0.3 2,-0.5 -0.995 14.5-146.0-146.7 137.5 0.8 2.9 1.7 6 6 A I E -Ab 15 53A 52 46,-0.8 2,-0.7 -2,-0.3 48,-0.5 -0.888 17.1-133.7-107.4 130.4 -2.5 4.5 2.8 7 7 A I E -Ab 14 54A 4 7,-1.8 7,-1.0 -2,-0.5 2,-0.2 -0.696 21.3-178.4 -83.5 117.1 -5.8 2.5 2.9 8 8 A N E +Ab 13 55A 50 46,-2.0 48,-1.8 -2,-0.7 2,-0.2 -0.341 25.3 149.5-109.6 52.1 -8.6 4.4 1.2 9 9 A G - 0 0 3 3,-1.6 30,-0.1 46,-0.2 46,-0.1 -0.572 57.7-120.4 -84.5 148.4 -11.4 1.9 1.8 10 10 A K S S+ 0 0 159 -2,-0.2 -1,-0.1 1,-0.2 3,-0.1 0.850 112.8 9.1 -56.3 -32.6 -15.0 3.2 2.2 11 11 A T S S+ 0 0 130 1,-0.2 2,-0.5 -3,-0.0 -1,-0.2 0.675 128.6 57.7-117.9 -34.0 -15.0 1.6 5.7 12 12 A L + 0 0 65 25,-0.1 -3,-1.6 26,-0.1 2,-0.2 -0.856 64.5 144.8-103.9 133.2 -11.4 0.5 6.3 13 13 A K E +A 8 0A 150 -2,-0.5 2,-0.3 -5,-0.2 -5,-0.2 -0.849 8.6 103.6-149.3-174.8 -8.6 3.1 6.2 14 14 A G E -A 7 0A 42 -7,-1.0 -7,-1.8 -2,-0.2 2,-0.3 -0.937 58.8 -80.0 131.6-155.2 -5.2 4.0 7.8 15 15 A E E -A 6 0A 99 -2,-0.3 2,-0.3 -9,-0.3 -9,-0.2 -0.931 32.3-174.4-144.2 167.8 -1.6 3.7 6.7 16 16 A T E -A 5 0A 26 -11,-1.8 -11,-3.0 -2,-0.3 2,-0.3 -0.975 5.4-161.9-163.8 149.4 1.2 1.0 6.5 17 17 A T E -A 4 0A 66 -2,-0.3 2,-0.3 -13,-0.3 -13,-0.2 -0.941 6.4-171.2-134.6 157.6 4.9 0.6 5.6 18 18 A T E -A 3 0A 35 -15,-0.7 -15,-1.9 -2,-0.3 2,-0.5 -0.922 20.3-127.0-141.8 168.3 7.1 -2.3 4.7 19 19 A E + 0 0 160 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.1 -0.960 46.9 128.5-123.0 118.2 10.9 -3.0 4.2 20 20 A A S S- 0 0 39 -2,-0.5 3,-0.1 1,-0.1 -17,-0.0 -0.937 70.6 -85.2-155.1 177.0 12.1 -4.7 0.9 21 21 A V S S- 0 0 110 -2,-0.3 2,-0.3 1,-0.2 -1,-0.1 0.906 110.1 -5.4 -58.4 -40.2 14.5 -4.4 -2.0 22 22 A D S > S- 0 0 99 1,-0.1 4,-2.1 -3,-0.0 3,-0.4 -0.980 72.2-107.2-150.4 160.9 12.1 -2.1 -3.8 23 23 A A H > S+ 0 0 11 -2,-0.3 4,-3.0 1,-0.2 5,-0.3 0.830 116.3 65.3 -61.8 -27.7 8.5 -0.7 -3.4 24 24 A A H > S+ 0 0 61 2,-0.2 4,-1.1 1,-0.2 -1,-0.2 0.946 106.1 41.2 -60.6 -45.5 7.5 -3.1 -6.3 25 25 A T H > S+ 0 0 59 -3,-0.4 4,-1.2 2,-0.2 3,-0.3 0.955 118.9 45.3 -67.7 -48.8 8.3 -6.1 -4.1 26 26 A A H >X S+ 0 0 2 -4,-2.1 4,-2.5 1,-0.2 3,-1.3 0.982 105.4 59.7 -59.2 -57.2 6.8 -4.6 -0.9 27 27 A E H 3X S+ 0 0 54 -4,-3.0 4,-2.5 1,-0.3 -1,-0.2 0.824 100.2 58.4 -42.3 -35.7 3.6 -3.3 -2.6 28 28 A K H 3X S+ 0 0 128 -4,-1.1 4,-1.7 -3,-0.3 -1,-0.3 0.951 110.2 42.1 -62.9 -43.7 2.8 -7.0 -3.6 29 29 A V H X S+ 0 0 108 -4,-1.7 4,-1.1 1,-0.2 3,-0.9 0.920 109.2 50.2 -63.6 -40.0 -2.7 -7.0 3.5 34 34 A I H 3X>S+ 0 0 0 -4,-2.0 4,-2.8 1,-0.2 5,-1.2 0.825 97.5 69.5 -67.4 -28.9 -5.4 -5.2 1.5 35 35 A N H 3<5S+ 0 0 117 -4,-2.1 -1,-0.2 1,-0.2 -2,-0.2 0.824 99.5 49.4 -59.7 -28.5 -6.8 -8.7 0.5 36 36 A D H <<5S+ 0 0 130 -3,-0.9 -1,-0.2 -4,-0.8 -2,-0.2 0.897 114.5 41.9 -78.8 -40.3 -7.9 -9.1 4.2 37 37 A N H <5S- 0 0 41 -4,-1.1 -2,-0.2 2,-0.1 -1,-0.2 0.818 103.3-131.9 -76.2 -28.9 -9.6 -5.7 4.5 38 38 A G T <5 + 0 0 50 -4,-2.8 2,-0.5 -5,-0.2 -3,-0.2 0.829 62.7 133.0 82.1 32.0 -11.2 -6.0 1.0 39 39 A I < + 0 0 7 -5,-1.2 2,-0.5 -30,-0.1 -31,-0.2 -0.610 20.7 138.7-115.6 73.1 -10.1 -2.5 -0.1 40 40 A D + 0 0 89 -2,-0.5 14,-0.1 1,-0.1 16,-0.1 -0.955 19.1 105.7-120.0 121.7 -8.6 -3.0 -3.6 41 41 A G S S- 0 0 37 -2,-0.5 2,-0.4 15,-0.2 15,-0.2 0.121 78.9 -4.5-151.7 -84.9 -9.3 -0.5 -6.4 42 42 A E B -C 55 0A 151 13,-1.5 13,-1.9 2,-0.0 2,-0.2 -0.958 58.4-167.4-131.6 118.9 -6.7 2.0 -7.7 43 43 A W - 0 0 51 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.581 2.3-162.9 -98.0 165.7 -3.3 2.5 -6.1 44 44 A T - 0 0 69 -2,-0.2 2,-0.2 9,-0.1 -2,-0.0 -0.969 9.3-141.9-150.7 131.4 -0.9 5.4 -6.7 45 45 A Y - 0 0 97 -2,-0.3 2,-0.4 7,-0.2 7,-0.2 -0.512 12.6-151.7 -89.4 161.7 2.9 5.8 -5.9 46 46 A D B >> -D 51 0B 58 5,-1.1 5,-0.9 -2,-0.2 4,-0.8 -0.985 16.0-152.0-137.5 128.5 4.5 9.0 -4.7 47 47 A D T 45S+ 0 0 146 -2,-0.4 -1,-0.1 1,-0.2 -2,-0.0 0.587 84.0 86.3 -73.5 -6.3 8.1 10.2 -5.3 48 48 A A T 45S- 0 0 91 1,-0.2 -1,-0.2 3,-0.0 0, 0.0 0.992 121.8 -21.5 -56.8 -72.5 7.9 12.1 -2.0 49 49 A T T 45S- 0 0 79 -3,-0.1 -1,-0.2 -45,-0.0 -2,-0.2 -0.128 99.8 -88.7-131.7 37.1 8.9 9.4 0.5 50 50 A K T <5S+ 0 0 79 -4,-0.8 -46,-1.8 -47,-0.1 -3,-0.2 0.955 77.3 156.8 56.0 52.1 8.1 6.2 -1.6 51 51 A T B < -D 46 0B 14 -5,-0.9 -5,-1.1 -48,-0.2 2,-0.2 -0.205 22.7-161.2 -94.1-169.6 4.5 6.1 -0.4 52 52 A W - 0 0 32 -7,-0.2 -46,-0.8 -2,-0.1 2,-0.3 -0.871 4.3-144.4-156.1-170.8 1.4 4.5 -2.1 53 53 A T E -b 6 0A 22 -2,-0.2 -46,-0.1 -48,-0.2 -9,-0.1 -0.969 8.7-170.3-158.6 171.0 -2.4 4.4 -2.1 54 54 A V E -b 7 0A 0 -48,-0.5 -46,-2.0 -2,-0.3 2,-0.4 -0.436 9.0-173.4-171.6 88.1 -5.4 2.1 -2.6 55 55 A T E bC 8 42A 64 -13,-1.9 -13,-1.5 -48,-0.1 -46,-0.2 -0.738 360.0 360.0 -91.3 133.5 -9.0 3.5 -3.0 56 56 A E 0 0 102 -48,-1.8 -15,-0.2 -2,-0.4 -17,-0.1 -0.423 360.0 360.0 -64.9 360.0 -11.8 0.9 -3.0