==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPID BINDING PROTEIN 30-JUL-00 1FH1 . COMPND 2 MOLECULE: NODULATION PROTEIN F; . SOURCE 2 ORGANISM_SCIENTIFIC: RHIZOBIUM LEGUMINOSARUM; . AUTHOR C.A.FOWLER,F.TIAN,H.M.AL-HASHIMI,J.H.PRESTEGARD . 37 3 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2830.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 54.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 43.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 5 A L > 0 0 126 0, 0.0 4,-2.3 0, 0.0 5,-0.4 0.000 360.0 360.0 360.0 -47.0 15.5 32.0 -2.4 2 6 A T H > + 0 0 72 1,-0.2 4,-0.8 2,-0.2 33,-0.1 0.925 360.0 51.5 -57.1 -47.1 12.8 30.1 -4.3 3 7 A L H 4 S+ 0 0 73 1,-0.2 -1,-0.2 2,-0.2 32,-0.0 0.926 108.4 51.5 -56.8 -47.1 15.3 27.5 -5.4 4 8 A E H > S+ 0 0 51 2,-0.4 4,-2.4 1,-0.3 5,-0.4 0.926 94.6 62.3 -57.1 -46.8 16.5 26.9 -1.9 5 9 A I H X S+ 0 0 68 -4,-2.3 4,-2.3 1,-0.4 -1,-0.3 0.951 103.7 61.2 -42.9 -31.1 12.9 26.4 -0.6 6 10 A I H X S+ 0 0 54 -4,-0.8 4,-0.6 -5,-0.4 -2,-0.4 0.927 95.4 51.5 -57.1 -46.9 14.4 24.1 -3.2 7 11 A S H 4 S+ 0 0 91 1,-0.2 4,-0.3 2,-0.1 -2,-0.2 0.926 108.4 51.5 -57.1 -46.9 17.1 23.0 -0.8 8 12 A A H X S+ 0 0 75 -4,-2.4 4,-0.8 1,-0.1 -1,-0.2 0.926 106.1 70.6 -57.0 -46.8 14.6 22.2 1.9 9 13 A I H X S+ 0 0 43 -4,-2.3 4,-2.3 -5,-0.4 -2,-0.1 0.628 73.6 48.7 -33.8 -69.4 12.5 20.1 -0.5 10 14 A N H < S+ 0 0 93 -4,-0.6 -1,-0.2 1,-0.2 -2,-0.1 0.925 114.1 51.5 -57.0 -47.0 13.0 16.7 -2.1 11 15 A K H 4 S+ 0 0 99 -4,-0.3 -1,-0.2 1,-0.2 -2,-0.2 0.926 108.4 51.5 -57.0 -47.0 13.9 15.1 1.2 12 16 A L H < 0 0 62 -4,-0.8 -1,-0.2 1,-0.2 -2,-0.2 0.926 360.0 360.0 -57.0 -47.1 10.8 16.5 2.9 13 17 A V < 0 0 100 -4,-2.3 -1,-0.2 9,-0.1 -2,-0.2 0.926 360.0 360.0 -56.9 360.0 8.6 15.1 0.2 14 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 15 46 A L > 0 0 125 0, 0.0 4,-2.3 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -47.0 3.3 9.8 8.2 16 47 A G T 4> + 0 0 48 1,-0.2 5,-1.2 2,-0.2 6,-0.7 0.926 360.0 51.5 -57.0 -47.0 1.3 13.0 8.3 17 48 A L T 45S+ 0 0 87 1,-0.2 5,-0.3 4,-0.2 -1,-0.2 0.925 108.4 51.5 -57.0 -47.0 4.5 15.1 8.3 18 49 A A T 45S+ 0 0 54 3,-0.1 -1,-0.2 4,-0.1 -2,-0.2 0.926 126.5 7.6 -57.1 -46.9 5.8 13.3 5.3 19 50 A D T X5S+ 0 0 63 -4,-2.3 4,-1.4 3,-0.1 5,-0.4 0.885 118.6 23.3 -99.4 -89.3 2.6 13.9 3.4 20 51 A V H >5S+ 0 0 75 1,-0.2 4,-2.8 -5,-0.2 5,-0.4 0.926 122.2 51.5 -57.0 -47.0 -0.8 15.7 3.5 21 52 A L H > S+ 0 0 40 -6,-0.7 4,-2.3 -5,-0.3 -2,-0.2 0.958 121.3 21.0 -44.8 -80.7 3.6 19.0 3.7 23 54 A D H X S+ 0 0 62 -4,-1.4 4,-2.3 1,-0.2 -1,-0.2 0.927 129.0 51.5 -57.0 -46.9 1.7 20.1 0.6 24 55 A L H < S+ 0 0 62 -4,-2.8 -3,-0.2 -5,-0.4 -1,-0.2 0.925 108.4 51.5 -57.0 -47.0 -1.4 20.9 2.7 25 56 A E H < S+ 0 0 78 -4,-5.0 -1,-0.2 -5,-0.4 -2,-0.2 0.926 108.4 51.5 -56.9 -47.1 0.6 23.0 5.1 26 57 A Q H < 0 0 76 -4,-2.3 -1,-0.2 -5,-0.4 -2,-0.2 0.927 360.0 360.0 -57.0 -46.9 2.2 25.0 2.3 27 58 A L < 0 0 114 -4,-2.3 -1,-0.2 -5,-0.2 -2,-0.2 0.926 360.0 360.0 -57.0 360.0 -1.2 25.7 0.8 28 ! 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 29 76 A N > 0 0 97 0, 0.0 4,-2.3 0, 0.0 5,-0.5 0.000 360.0 360.0 360.0 -47.0 1.3 23.4 -5.3 30 77 A I T 4 + 0 0 74 1,-0.2 5,-0.2 2,-0.2 -7,-0.0 0.926 360.0 51.5 -56.9 -47.1 4.9 24.6 -5.0 31 78 A G T 4 S+ 0 0 82 1,-0.2 -1,-0.2 2,-0.1 -18,-0.0 0.926 108.4 51.5 -56.9 -47.0 6.2 21.0 -5.2 32 79 A D T 4 S- 0 0 92 1,-0.0 -1,-0.2 3,-0.0 -2,-0.2 0.926 121.4 -98.4 -57.1 -46.9 4.1 20.3 -8.3 33 80 A V S >< S+ 0 0 48 -4,-2.3 3,-1.5 3,-0.0 -3,-0.2 0.817 77.7 126.6 145.5 7.4 5.5 23.4 -10.0 34 81 A V T >> S+ 0 0 72 -5,-0.5 3,-4.1 1,-0.3 4,-0.5 0.926 71.3 90.8 -57.0 -46.9 4.9 27.0 -10.9 35 82 A E H 3> S+ 0 0 66 1,-0.3 4,-2.3 2,-0.2 -1,-0.3 0.769 76.7 77.9 -22.1 -24.0 8.2 28.1 -9.3 36 83 A A H <4 S+ 0 0 76 -3,-1.5 -1,-0.3 1,-0.2 -2,-0.2 0.926 86.5 51.5 -57.1 -46.9 8.9 27.3 -13.0 37 84 A V H <4 S+ 0 0 95 -3,-4.1 -1,-0.2 1,-0.2 -2,-0.2 0.926 108.4 51.5 -56.9 -47.1 7.5 30.6 -14.1 38 85 A R H < 0 0 85 -4,-0.5 -1,-0.2 1,-0.2 -2,-0.2 0.926 360.0 360.0 -57.0 -47.0 9.7 32.5 -11.6 39 86 A G < 0 0 104 -4,-2.3 -1,-0.2 -5,-0.3 -2,-0.2 0.926 360.0 360.0 -57.1 360.0 12.8 30.8 -12.9