==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 08-AUG-00 1FJN . COMPND 2 MOLECULE: DEFENSIN MGD-1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR Y.S.YANG . 39 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3077.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 56.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 12.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 20.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 53 0, 0.0 9,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 172.1 -6.9 5.2 2.9 2 2 A F - 0 0 85 1,-0.2 11,-0.3 30,-0.1 10,-0.1 0.828 360.0 -55.7 56.2 30.3 -3.4 5.5 1.2 3 3 A G S S- 0 0 32 1,-0.2 7,-0.6 6,-0.1 6,-0.2 0.969 94.3-145.5 69.1 52.4 -5.2 6.2 -2.1 4 4 A a + 0 0 23 1,-0.3 -1,-0.2 27,-0.2 27,-0.1 -0.757 66.1 11.8-107.6 157.1 -7.3 3.0 -2.1 5 5 A P S S+ 0 0 56 0, 0.0 -1,-0.3 0, 0.0 20,-0.3 -0.934 102.5 107.2 -82.4 21.2 -8.5 1.0 -3.7 6 6 A N > - 0 0 84 1,-0.1 4,-1.5 18,-0.1 5,-0.1 -0.301 56.6-154.5 -56.6 132.0 -6.2 2.7 -6.3 7 7 A N H > S+ 0 0 105 2,-0.2 4,-2.6 3,-0.2 5,-0.2 0.878 91.7 50.8 -77.8 -38.0 -3.2 0.4 -7.1 8 8 A Y H > S+ 0 0 180 2,-0.2 4,-2.5 1,-0.2 5,-0.2 0.969 115.0 41.2 -65.1 -52.2 -0.9 3.3 -8.1 9 9 A Q H > S+ 0 0 92 -6,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.918 117.7 48.5 -63.5 -40.9 -1.5 5.4 -5.0 10 10 A b H X S+ 0 0 0 -4,-1.5 4,-1.8 -7,-0.6 -1,-0.2 0.925 112.7 48.1 -65.7 -41.5 -1.4 2.3 -2.8 11 11 A H H X S+ 0 0 66 -4,-2.6 4,-2.0 1,-0.2 -2,-0.2 0.895 107.8 56.0 -66.2 -37.4 1.9 1.1 -4.4 12 12 A R H X S+ 0 0 173 -4,-2.5 4,-1.9 1,-0.2 -1,-0.2 0.907 106.4 50.6 -62.1 -39.7 3.3 4.7 -4.0 13 13 A H H X S+ 0 0 56 -4,-1.8 4,-1.4 -11,-0.3 -1,-0.2 0.929 109.9 49.5 -65.1 -43.0 2.7 4.5 -0.2 14 14 A c H < S+ 0 0 0 -4,-1.8 -1,-0.2 1,-0.2 -2,-0.2 0.870 108.0 55.6 -64.3 -34.2 4.4 1.0 -0.0 15 15 A K H < S+ 0 0 145 -4,-2.0 -1,-0.2 1,-0.2 -2,-0.2 0.926 105.7 49.6 -65.8 -43.5 7.4 2.5 -2.0 16 16 A S H < S+ 0 0 92 -4,-1.9 -1,-0.2 -5,-0.1 -2,-0.2 0.833 94.7 90.7 -66.4 -28.3 7.9 5.4 0.6 17 17 A I S >< S- 0 0 40 -4,-1.4 3,-0.5 -5,-0.2 2,-0.2 -0.511 85.6-120.5 -70.6 133.8 7.8 2.8 3.4 18 18 A P T 3 S+ 0 0 115 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.517 93.0 28.1 -75.9 136.8 11.3 1.4 4.2 19 19 A G T 3 S+ 0 0 55 1,-0.3 2,-0.3 -2,-0.2 -4,-0.1 0.859 103.7 98.3 82.4 36.8 11.9 -2.4 3.8 20 20 A R < - 0 0 89 -3,-0.5 -1,-0.3 17,-0.3 17,-0.2 -0.902 45.6-173.5-145.0 174.0 9.2 -2.8 1.1 21 21 A d - 0 0 50 15,-1.3 2,-0.3 1,-0.5 16,-0.1 0.507 69.4 -9.1-137.0 -54.5 8.8 -3.1 -2.7 22 22 A G E -A 36 0A 2 14,-0.6 14,-2.0 -8,-0.1 -1,-0.5 -0.852 57.0-178.8-142.0 177.9 5.1 -3.2 -3.7 23 23 A G E -A 35 0A 7 12,-0.3 2,-0.3 -2,-0.3 12,-0.3 -0.949 11.7-142.1-164.6-177.0 1.7 -3.4 -2.1 24 24 A Y E -A 34 0A 111 10,-1.8 10,-3.2 -2,-0.3 2,-0.8 -0.985 32.1 -95.5-154.7 162.5 -2.1 -3.5 -2.8 25 25 A a E S+A 33 0A 11 -20,-0.3 2,-0.3 -2,-0.3 8,-0.2 -0.731 72.5 110.2 -86.8 111.1 -5.4 -2.2 -1.3 26 26 A G + 0 0 12 6,-3.0 -2,-0.1 -2,-0.8 2,-0.0 -0.926 34.4 67.2-175.1 149.6 -6.9 -5.0 0.9 27 27 A G S S+ 0 0 80 -2,-0.3 2,-0.5 6,-0.0 6,-0.1 -0.428 100.5 42.6 129.9 -59.1 -7.6 -5.8 4.6 28 28 A W S > S- 0 0 158 1,-0.1 3,-1.7 4,-0.1 4,-0.2 -0.831 139.9 -42.2-123.6 94.4 -10.3 -3.3 5.6 29 29 A H T 3 S- 0 0 138 -2,-0.5 -1,-0.1 1,-0.3 -4,-0.0 0.847 105.5 -68.5 57.1 32.7 -13.0 -2.9 3.0 30 30 A R T 3 S+ 0 0 156 1,-0.1 -1,-0.3 -6,-0.0 -5,-0.1 0.819 123.3 103.7 57.9 27.9 -10.2 -2.9 0.3 31 31 A L < + 0 0 56 -3,-1.7 2,-0.3 -27,-0.1 -27,-0.2 0.575 53.2 87.5-113.4 -15.9 -9.1 0.5 1.7 32 32 A R S S- 0 0 145 -4,-0.2 -6,-3.0 -29,-0.1 2,-0.8 -0.649 76.7-129.1 -86.2 141.4 -6.0 -0.5 3.7 33 33 A b E -A 25 0A 12 -2,-0.3 2,-0.7 -8,-0.2 -8,-0.2 -0.784 21.3-165.0 -93.1 110.9 -2.7 -0.6 1.9 34 34 A T E -A 24 0A 48 -10,-3.2 -10,-1.8 -2,-0.8 2,-0.3 -0.831 10.2-175.6 -98.2 111.6 -1.0 -4.0 2.5 35 35 A c E -A 23 0A 13 -2,-0.7 2,-0.3 -12,-0.3 -12,-0.3 -0.783 12.2-144.3-105.8 150.9 2.7 -3.8 1.4 36 36 A Y E -A 22 0A 120 -14,-2.0 -15,-1.3 -2,-0.3 -14,-0.6 -0.847 25.6-101.5-114.4 151.4 5.2 -6.8 1.4 37 37 A R - 0 0 200 -2,-0.3 2,-0.4 -17,-0.2 -17,-0.3 -0.411 38.8-116.4 -68.4 142.3 8.9 -6.8 2.3 38 38 A d 0 0 71 1,-0.1 -1,-0.1 -2,-0.1 -18,-0.0 -0.650 360.0 360.0 -82.2 130.9 11.3 -6.9 -0.8 39 39 A G 0 0 146 -2,-0.4 -1,-0.1 0, 0.0 -19,-0.0 0.794 360.0 360.0 -91.4 360.0 13.4 -10.0 -1.0