==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 31-DEC-05 2FJ4 . COMPND 2 MOLECULE: METALLOTHIONEIN-3; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR H.WU,Q.ZHANG . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2851.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 56.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 10.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 18.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 32 A K 0 0 156 0, 0.0 8,-0.3 0, 0.0 9,-0.1 0.000 360.0 360.0 360.0 14.3 3.8 -4.5 7.2 2 33 A S + 0 0 85 1,-0.1 2,-0.2 6,-0.0 7,-0.2 0.592 360.0 145.6 65.0 9.5 3.5 -0.8 8.1 3 34 A C + 0 0 58 5,-0.2 2,-0.2 3,-0.0 -1,-0.1 0.210 54.1 26.0 -66.1 8.8 6.1 -0.5 5.4 4 35 A C - 0 0 41 3,-0.6 25,-0.1 -2,-0.2 24,-0.1 -0.643 65.3-121.0-147.9-170.3 4.8 2.8 4.1 5 36 A S S S+ 0 0 66 23,-1.3 24,-0.2 -2,-0.2 23,-0.1 0.518 113.8 52.2-118.7 -48.2 3.0 6.1 4.4 6 37 A C S S+ 0 0 19 22,-1.1 27,-0.4 21,-0.3 23,-0.1 0.520 118.7 38.6 -54.7 -14.3 0.4 5.4 1.7 7 38 A C - 0 0 11 21,-0.2 -3,-0.6 25,-0.1 2,-0.1 -1.000 69.4-135.2-151.9 144.3 -0.4 2.0 3.4 8 39 A P > - 0 0 67 0, 0.0 3,-2.7 0, 0.0 -5,-0.2 -0.424 44.4 -85.3 -92.7 173.3 -0.9 0.3 6.9 9 40 A A T 3 S+ 0 0 75 1,-0.3 -2,-0.0 -8,-0.3 0, 0.0 0.413 126.6 52.7 -44.7 -10.7 0.2 -3.0 8.6 10 41 A E T 3 S+ 0 0 163 -9,-0.1 2,-1.7 -8,-0.0 -1,-0.3 0.392 71.1 137.6-112.5 -3.2 -2.8 -4.7 7.0 11 42 A C X> - 0 0 11 -3,-2.7 4,-2.8 1,-0.2 3,-2.3 -0.253 39.2-161.5 -58.3 82.9 -2.1 -3.7 3.3 12 43 A E H 3> S+ 0 0 121 -2,-1.7 4,-0.6 1,-0.3 -1,-0.2 0.647 88.3 52.7 -15.9 -52.5 -2.8 -6.9 1.3 13 44 A K H 3> S+ 0 0 64 2,-0.2 4,-0.6 1,-0.2 6,-0.6 0.832 119.4 33.7 -71.9 -35.3 -0.8 -5.7 -1.7 14 45 A C H <> S+ 0 0 1 -3,-2.3 4,-2.9 4,-0.2 -2,-0.2 0.792 99.0 78.0 -91.3 -38.0 2.3 -4.9 0.4 15 46 A A H < S+ 0 0 46 -4,-2.8 -3,-0.2 1,-0.2 -2,-0.2 0.752 96.5 55.3 -40.7 -33.1 1.8 -7.8 2.9 16 47 A K H < S- 0 0 178 -4,-0.6 -1,-0.2 -5,-0.3 -2,-0.2 0.996 144.6 -47.0 -59.8 -74.4 3.3 -9.8 0.0 17 48 A D H < S- 0 0 111 -4,-0.6 4,-0.2 0, 0.0 -2,-0.2 -0.103 85.9 -81.2-166.3 48.4 6.5 -7.7 -0.5 18 49 A C >< - 0 0 19 -4,-2.9 3,-2.8 -7,-0.2 -4,-0.2 0.921 38.6-153.4 48.4 70.8 5.7 -4.0 -0.5 19 50 A V G > S+ 0 0 73 -6,-0.6 3,-0.7 1,-0.3 -1,-0.1 0.728 90.3 62.3 -22.5 -50.4 4.3 -3.1 -4.1 20 51 A C G > + 0 0 10 1,-0.2 3,-2.7 2,-0.1 -1,-0.3 0.424 66.9 111.5 -74.3 -3.5 5.5 0.5 -3.8 21 52 A K G < S+ 0 0 134 -3,-2.8 -1,-0.2 1,-0.3 -2,-0.1 0.812 82.3 43.5 -42.6 -44.2 9.2 -0.3 -3.4 22 53 A G G < S+ 0 0 73 -3,-0.7 2,-2.2 1,-0.2 -1,-0.3 0.515 83.5 98.9 -85.2 -2.4 10.1 1.2 -6.8 23 54 A G X > + 0 0 16 -3,-2.7 3,-1.0 1,-0.2 5,-0.9 -0.314 52.4 160.8 -76.2 57.7 7.8 4.3 -6.2 24 55 A E T 3 5S+ 0 0 186 -2,-2.2 -1,-0.2 1,-0.3 4,-0.0 0.918 77.0 8.2 -52.5 -76.4 11.0 6.2 -5.2 25 56 A A T 3 5S+ 0 0 104 -3,-0.2 -1,-0.3 3,-0.1 -2,-0.1 -0.034 122.5 95.8 -90.2 25.5 10.1 9.9 -5.6 26 57 A A T X 5S- 0 0 51 -3,-1.0 3,-0.5 -6,-0.2 4,-0.3 0.248 103.0 -52.6 -92.5-139.8 6.5 8.6 -6.1 27 58 A E T 3 5S+ 0 0 48 1,-0.2 5,-0.4 2,-0.1 3,-0.4 0.445 93.3 114.6 -90.0 2.1 3.7 8.2 -3.5 28 59 A A T 3 - 0 0 0 -27,-0.4 4,-0.6 -2,-0.3 -13,-0.0 -0.796 24.0-122.1-131.3 171.6 -0.7 5.6 -3.7 34 65 A S T 4 S+ 0 0 104 -2,-0.2 0, 0.0 2,-0.1 0, 0.0 -0.066 99.0 50.2-116.7 30.8 -1.8 4.3 -7.1 35 66 A C T 4 S+ 0 0 74 0, 0.0 -1,-0.1 0, 0.0 -16,-0.0 0.560 111.1 39.9-118.6 -54.9 -1.2 0.6 -6.9 36 67 A C T 4 0 0 8 1,-0.2 -2,-0.1 -25,-0.0 -23,-0.1 0.731 360.0 360.0 -73.6 -31.0 -2.8 -0.6 -3.7 37 68 A Q < 0 0 179 -4,-0.6 -1,-0.2 0, 0.0 -3,-0.1 0.800 360.0 360.0 -69.8 360.0 -6.0 1.6 -3.9