==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 29-AUG-00 1FOV . COMPND 2 MOLECULE: GLUTAREDOXIN 3; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR K.NORDSTRAND,A.SANDSTROM,F.ASLUND,A.HOLMGREN,G.OTTING, . 82 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5080.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 58 70.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 6.1 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 12.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 6.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 7.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 28 34.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 83 0, 0.0 2,-1.1 0, 0.0 80,-0.1 0.000 360.0 360.0 360.0 135.5 -6.8 8.3 -7.5 2 2 A N + 0 0 104 78,-0.1 56,-1.5 26,-0.1 57,-1.4 -0.728 360.0 161.7 -88.3 93.5 -3.1 8.5 -6.4 3 3 A V E +A 57 0A 6 -2,-1.1 26,-2.2 54,-0.2 2,-0.3 -0.969 11.0 172.0-127.6 128.0 -2.6 5.0 -4.9 4 4 A E E -Ab 56 29A 43 52,-2.0 52,-2.5 -2,-0.4 2,-0.4 -0.966 11.4-170.3-136.1 145.3 0.7 3.2 -4.2 5 5 A I E -Ab 55 30A 0 24,-1.5 26,-2.6 -2,-0.3 2,-0.3 -0.963 15.0-146.0-139.5 115.6 1.7 0.1 -2.4 6 6 A Y E +Ab 54 31A 1 48,-2.0 48,-1.0 -2,-0.4 2,-0.2 -0.642 33.3 168.5 -75.4 144.7 5.2 -1.0 -1.6 7 7 A T E - b 0 32A 3 24,-2.4 26,-2.0 -2,-0.3 2,-0.3 -0.868 22.8-154.8-147.2 172.1 5.7 -4.8 -1.8 8 8 A K - 0 0 89 -2,-0.2 3,-0.3 24,-0.2 6,-0.1 -0.944 41.9 -91.4-146.1 174.0 8.2 -7.8 -1.8 9 9 A E S S+ 0 0 166 -2,-0.3 2,-0.5 1,-0.2 -1,-0.0 0.777 121.3 33.9 -49.7 -39.5 8.5 -11.5 -3.0 10 10 A T S S+ 0 0 111 4,-0.0 -1,-0.2 5,-0.0 0, 0.0 -0.885 76.6 126.9-133.6 88.3 7.3 -12.7 0.4 11 11 A a >> - 0 0 14 -2,-0.5 4,-2.1 -3,-0.3 3,-0.6 -0.690 29.3-176.4-148.8 86.7 4.7 -10.4 1.9 12 12 A P H 3> S+ 0 0 95 0, 0.0 4,-2.6 0, 0.0 -1,-0.1 0.915 89.3 51.2 -61.0 -37.2 1.4 -12.1 2.9 13 13 A Y H 3> S+ 0 0 142 2,-0.2 4,-2.5 1,-0.2 5,-0.2 0.796 105.4 56.3 -73.4 -24.8 -0.1 -8.8 4.0 14 14 A a H <> S+ 0 0 4 -3,-0.6 4,-2.9 2,-0.2 5,-0.2 0.975 109.8 45.4 -63.1 -52.0 0.9 -7.3 0.6 15 15 A H H X S+ 0 0 123 -4,-2.1 4,-2.9 1,-0.2 -2,-0.2 0.900 111.0 55.1 -55.8 -41.9 -1.1 -10.1 -1.1 16 16 A R H X S+ 0 0 106 -4,-2.6 4,-1.8 2,-0.2 -2,-0.2 0.952 112.5 40.9 -54.5 -56.0 -3.9 -9.4 1.5 17 17 A A H X S+ 0 0 0 -4,-2.5 4,-2.5 2,-0.2 -2,-0.2 0.940 116.6 48.2 -62.0 -49.3 -4.2 -5.7 0.5 18 18 A K H X S+ 0 0 62 -4,-2.9 4,-2.7 1,-0.2 5,-0.2 0.905 108.8 54.6 -60.7 -39.0 -3.8 -6.3 -3.2 19 19 A A H X S+ 0 0 34 -4,-2.9 4,-1.7 -5,-0.2 -1,-0.2 0.874 110.5 46.4 -63.1 -38.2 -6.4 -9.1 -3.2 20 20 A L H X S+ 0 0 21 -4,-1.8 4,-2.7 -5,-0.2 5,-0.2 0.947 112.5 49.7 -65.0 -47.7 -8.9 -6.7 -1.6 21 21 A L H X>S+ 0 0 0 -4,-2.5 5,-2.2 1,-0.2 4,-1.7 0.858 112.1 47.6 -63.9 -35.0 -8.1 -4.0 -4.1 22 22 A S H <5S+ 0 0 77 -4,-2.7 -1,-0.2 2,-0.2 -2,-0.2 0.803 108.7 54.7 -75.2 -28.9 -8.5 -6.4 -7.0 23 23 A S H <5S+ 0 0 113 -4,-1.7 -2,-0.2 -5,-0.2 -1,-0.2 0.938 113.4 41.5 -65.6 -40.2 -11.8 -7.6 -5.4 24 24 A K H <5S- 0 0 88 -4,-2.7 -2,-0.2 -5,-0.1 -1,-0.2 0.861 109.2-138.1 -73.3 -25.6 -12.8 -3.9 -5.5 25 25 A G T <5 + 0 0 57 -4,-1.7 -3,-0.2 -5,-0.2 -4,-0.1 0.808 44.0 160.6 73.5 32.3 -11.2 -3.8 -9.0 26 26 A V < - 0 0 19 -5,-2.2 2,-0.5 1,-0.1 -1,-0.2 -0.298 45.7-109.5 -77.7 171.4 -9.6 -0.4 -8.3 27 27 A S + 0 0 102 54,-0.4 2,-0.3 -2,-0.1 -24,-0.1 -0.901 51.5 155.8-101.1 121.6 -6.6 1.1 -10.2 28 28 A F - 0 0 65 -2,-0.5 2,-0.4 -26,-0.1 -24,-0.2 -0.943 37.3-121.5-141.7 165.0 -3.5 1.2 -8.0 29 29 A Q E -b 4 0A 99 -26,-2.2 -24,-1.5 -2,-0.3 2,-0.3 -0.892 19.3-152.5-108.5 144.6 0.4 1.2 -8.4 30 30 A E E -b 5 0A 69 -2,-0.4 -24,-0.2 -26,-0.2 -27,-0.0 -0.898 3.2-161.7-115.6 143.7 2.7 -1.4 -6.9 31 31 A L E -b 6 0A 7 -26,-2.6 -24,-2.4 -2,-0.3 2,-0.2 -0.932 12.8-147.1-130.4 103.6 6.4 -0.7 -5.9 32 32 A P E -b 7 0A 67 0, 0.0 -24,-0.2 0, 0.0 7,-0.1 -0.450 16.4-169.6 -75.9 144.4 8.7 -3.7 -5.5 33 33 A I > + 0 0 9 -26,-2.0 2,-0.9 -2,-0.2 3,-0.9 0.283 48.8 128.3-104.7 6.7 11.5 -3.7 -3.0 34 34 A D T 3 S- 0 0 69 1,-0.3 3,-0.1 -27,-0.2 -26,-0.1 -0.505 95.0 -14.1 -74.7 95.7 12.9 -6.9 -4.6 35 35 A G T 3 S+ 0 0 90 -2,-0.9 -1,-0.3 1,-0.3 -2,-0.1 0.328 112.9 128.6 88.1 -1.9 16.5 -6.1 -5.2 36 36 A N < + 0 0 42 -3,-0.9 -1,-0.3 1,-0.1 -3,-0.1 -0.223 19.7 150.0 -83.4 168.5 15.8 -2.4 -4.6 37 37 A A S > S+ 0 0 61 -3,-0.1 4,-2.4 -2,-0.0 5,-0.2 0.144 71.0 58.2-163.1 -47.3 17.6 0.0 -2.2 38 38 A A H > S+ 0 0 72 1,-0.2 4,-1.7 2,-0.2 -2,-0.1 0.916 115.1 38.6 -67.9 -40.9 17.3 3.6 -3.7 39 39 A K H > S+ 0 0 108 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.704 110.5 60.9 -81.1 -17.6 13.5 3.5 -3.7 40 40 A R H > S+ 0 0 120 2,-0.2 4,-0.8 1,-0.2 -2,-0.2 0.897 105.5 47.8 -67.6 -39.1 13.6 1.7 -0.3 41 41 A E H >X S+ 0 0 117 -4,-2.4 4,-1.6 2,-0.2 3,-1.0 0.918 106.9 56.5 -63.1 -40.8 15.4 4.8 0.9 42 42 A E H 3X S+ 0 0 97 -4,-1.7 4,-2.5 1,-0.3 -2,-0.2 0.923 102.6 55.9 -52.8 -45.7 12.6 6.8 -0.8 43 43 A M H 3X>S+ 0 0 0 -4,-2.0 4,-2.7 1,-0.2 5,-1.0 0.744 100.4 58.9 -61.5 -25.0 10.2 4.7 1.4 44 44 A I H S-AC 3 60A 0 3,-2.5 3,-1.8 -2,-0.4 -54,-0.2 -0.991 80.9 -11.2-121.0 118.0 -4.1 6.5 -0.8 58 58 A D T 3 S- 0 0 67 -56,-1.5 -1,-0.2 -2,-0.5 -55,-0.2 0.943 130.5 -57.9 49.3 52.5 -4.1 9.9 -2.4 59 59 A A T 3 S+ 0 0 71 -57,-1.4 2,-0.7 1,-0.2 -1,-0.3 0.368 110.7 131.0 61.0 0.6 -0.5 10.2 -1.3 60 60 A Q E < -C 57 0A 130 -3,-1.8 -3,-2.5 -58,-0.2 2,-0.7 -0.730 60.8-132.4 -86.6 108.2 -1.7 9.7 2.3 61 61 A H E +C 56 0A 62 -2,-0.7 -5,-0.3 -5,-0.3 -1,-0.1 -0.545 30.2 175.9 -63.1 109.3 0.5 7.1 3.9 62 62 A I E - 0 0 43 -7,-2.2 2,-0.3 -2,-0.7 -1,-0.2 0.961 32.8-128.4 -78.4 -56.4 -2.1 4.7 5.5 63 63 A G E -C 55 0A 3 -8,-1.1 -8,-2.7 4,-0.0 -1,-0.3 -0.976 49.8 -20.6 130.1-141.7 0.2 2.0 6.9 64 64 A G S > S- 0 0 13 -2,-0.3 4,-2.5 -10,-0.2 5,-0.2 0.044 78.6 -72.1 -99.0-165.8 -0.2 -1.8 6.3 65 65 A Y H > S+ 0 0 29 1,-0.2 4,-3.2 2,-0.2 5,-0.2 0.892 129.2 50.0 -59.0 -43.2 -3.0 -4.2 5.3 66 66 A D H > S+ 0 0 118 2,-0.2 4,-1.7 1,-0.2 -1,-0.2 0.901 113.5 47.2 -64.8 -35.8 -4.9 -4.0 8.6 67 67 A D H > S+ 0 0 81 2,-0.2 4,-1.6 1,-0.2 -2,-0.2 0.896 117.2 42.8 -68.8 -45.9 -4.8 -0.1 8.4 68 68 A L H X S+ 0 0 0 -4,-2.5 4,-2.1 2,-0.2 -2,-0.2 0.888 112.4 52.0 -62.4 -48.5 -6.0 -0.2 4.8 69 69 A Y H X S+ 0 0 107 -4,-3.2 4,-2.1 1,-0.2 -2,-0.2 0.825 108.7 52.1 -69.5 -29.4 -8.6 -2.8 5.4 70 70 A A H X S+ 0 0 49 -4,-1.7 4,-1.7 -5,-0.2 -1,-0.2 0.899 105.4 54.0 -66.9 -44.2 -9.9 -0.7 8.3 71 71 A L H <>S+ 0 0 18 -4,-1.6 5,-2.1 1,-0.2 6,-1.1 0.885 112.9 44.8 -56.8 -37.7 -10.1 2.3 5.8 72 72 A D H ><5S+ 0 0 32 -4,-2.1 3,-2.1 4,-0.2 -2,-0.2 0.902 107.8 58.1 -66.4 -40.8 -12.2 -0.0 3.7 73 73 A A H 3<5S+ 0 0 76 -4,-2.1 -2,-0.2 1,-0.3 -1,-0.2 0.743 105.7 49.5 -65.8 -27.2 -14.2 -1.1 6.8 74 74 A R T 3<5S- 0 0 201 -4,-1.7 -1,-0.3 -5,-0.1 -2,-0.2 0.281 115.5-117.4 -89.2 3.8 -15.2 2.5 7.4 75 75 A G T < 5S+ 0 0 48 -3,-2.1 -3,-0.2 -5,-0.1 -2,-0.1 0.675 87.6 114.7 67.3 18.3 -16.3 2.8 3.8 76 76 A G < + 0 0 13 -5,-2.1 -4,-0.2 -6,-0.2 4,-0.2 0.569 59.4 64.2 -98.9 -12.4 -13.6 5.5 3.4 77 77 A L S >> S+ 0 0 1 -6,-1.1 4,-2.5 2,-0.1 3,-1.4 0.939 97.8 55.7 -73.7 -49.2 -11.3 3.7 1.0 78 78 A D H 3> S+ 0 0 57 1,-0.3 4,-3.1 2,-0.2 -2,-0.2 0.889 102.3 53.2 -53.9 -51.8 -13.9 3.7 -1.9 79 79 A P H 34 S+ 0 0 95 0, 0.0 -1,-0.3 0, 0.0 -2,-0.1 0.557 115.9 42.7 -68.4 -8.5 -14.5 7.5 -2.0 80 80 A L H <4 S+ 0 0 60 -3,-1.4 -2,-0.2 -4,-0.2 -3,-0.1 0.814 125.3 32.1 -91.1 -49.5 -10.7 8.0 -2.3 81 81 A L H < 0 0 13 -4,-2.5 -54,-0.4 -80,-0.1 -3,-0.2 0.659 360.0 360.0 -82.6 -22.3 -10.1 5.2 -4.9 82 82 A K < 0 0 192 -4,-3.1 -56,-0.0 -5,-0.2 0, 0.0 -0.782 360.0 360.0-133.8 360.0 -13.3 5.1 -6.9