==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RIBOSOMAL PROTEIN 13-SEP-96 1FOX . COMPND 2 MOLECULE: L11-C76; . SOURCE 2 ORGANISM_SCIENTIFIC: GEOBACILLUS STEAROTHERMOPHILUS; . AUTHOR M.A.MARKUS,A.P.HINCK,S.HUANG,D.E.DRAPER,D.A.TORCHIA . 76 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6217.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 43 56.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 4 5.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 11.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 23 30.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 238 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -9.4 -11.4 27.7 -4.8 2 2 A T - 0 0 128 1,-0.4 0, 0.0 3,-0.0 0, 0.0 0.074 360.0-117.9-118.9 24.0 -9.4 24.5 -5.6 3 3 A F - 0 0 205 2,-0.0 -1,-0.4 0, 0.0 2,-0.2 -0.136 50.0 -53.0 67.2-171.9 -12.3 22.0 -5.6 4 4 A I - 0 0 135 -3,-0.1 2,-0.3 2,-0.0 0, 0.0 -0.652 40.9-157.3 -99.6 159.2 -12.3 19.1 -3.1 5 5 A T + 0 0 118 -2,-0.2 2,-0.4 2,-0.0 -2,-0.0 -0.653 21.9 165.5-136.5 80.8 -9.5 16.6 -2.5 6 6 A K + 0 0 180 -2,-0.3 -2,-0.0 0, 0.0 44,-0.0 -0.790 8.5 178.8 -98.7 138.7 -10.7 13.4 -1.0 7 7 A T - 0 0 46 -2,-0.4 -2,-0.0 43,-0.1 40,-0.0 -0.999 21.7-127.1-141.5 143.0 -8.5 10.3 -1.0 8 8 A P - 0 0 55 0, 0.0 2,-0.1 0, 0.0 42,-0.0 -0.181 39.3 -85.6 -78.1 174.4 -8.9 6.8 0.4 9 9 A P >> - 0 0 86 0, 0.0 4,-1.0 0, 0.0 3,-0.8 -0.311 28.8-122.2 -77.8 162.7 -6.5 4.9 2.7 10 10 A A H 3> S+ 0 0 20 1,-0.2 4,-1.8 2,-0.2 5,-0.3 0.688 107.1 71.1 -81.1 -16.1 -3.5 3.0 1.3 11 11 A A H 34 S+ 0 0 39 1,-0.2 -1,-0.2 2,-0.2 4,-0.1 0.498 101.6 46.4 -77.9 0.8 -4.7 -0.2 3.0 12 12 A V H <> S+ 0 0 77 -3,-0.8 4,-0.7 3,-0.1 -2,-0.2 0.760 119.3 33.6-109.2 -39.6 -7.5 -0.3 0.4 13 13 A L H X S+ 0 0 47 -4,-1.0 4,-2.3 2,-0.1 -2,-0.2 0.867 108.9 67.5 -84.9 -37.9 -5.7 0.3 -2.8 14 14 A L H >X S+ 0 0 0 -4,-1.8 4,-1.4 1,-0.2 3,-0.9 0.952 104.3 40.5 -44.8 -75.7 -2.5 -1.5 -1.9 15 15 A K H 3>>S+ 0 0 78 -5,-0.3 4,-1.8 1,-0.3 5,-0.6 0.895 109.0 64.8 -42.3 -44.5 -3.9 -5.0 -1.7 16 16 A K H 3<5S+ 0 0 167 -4,-0.7 -1,-0.3 1,-0.2 -2,-0.2 0.946 98.5 52.1 -46.3 -54.2 -5.9 -4.1 -4.9 17 17 A A H <<5S+ 0 0 46 -4,-2.3 -1,-0.2 -3,-0.9 -2,-0.2 0.939 115.0 43.3 -49.9 -48.6 -2.6 -3.7 -6.8 18 18 A A H <5S- 0 0 42 -4,-1.4 -2,-0.2 -3,-0.1 -1,-0.1 0.993 103.2-129.7 -61.6 -75.5 -1.6 -7.2 -5.6 19 19 A G T <5 + 0 0 49 -4,-1.8 2,-1.1 1,-0.1 -3,-0.2 0.625 41.6 161.3 126.8 40.5 -4.9 -9.1 -6.1 20 20 A I < + 0 0 78 -5,-0.6 -1,-0.1 1,-0.2 3,-0.1 -0.738 21.2 129.1 -92.8 98.7 -5.6 -11.0 -2.8 21 21 A E S S- 0 0 181 -2,-1.1 2,-0.3 1,-0.2 -1,-0.2 0.737 71.4 -30.6-112.6 -68.5 -9.3 -11.8 -2.9 22 22 A S - 0 0 125 3,-0.0 2,-0.4 0, 0.0 -1,-0.2 -0.987 49.8-172.3-155.8 144.4 -9.9 -15.5 -2.1 23 23 A G - 0 0 60 -2,-0.3 -3,-0.0 1,-0.1 0, 0.0 -0.978 27.1-140.9-143.2 128.9 -8.1 -18.8 -2.7 24 24 A S - 0 0 118 -2,-0.4 2,-0.1 1,-0.1 -1,-0.1 0.721 69.0 -90.0 -60.6 -15.1 -9.2 -22.4 -2.1 25 25 A G S S- 0 0 47 -3,-0.0 -1,-0.1 0, 0.0 -3,-0.0 -0.540 93.8 -5.9 141.9 -74.3 -5.7 -22.9 -0.8 26 26 A E + 0 0 173 -2,-0.1 3,-0.1 4,-0.0 4,-0.1 -0.531 69.9 169.0-157.9 84.5 -3.3 -24.0 -3.6 27 27 A P - 0 0 74 0, 0.0 2,-0.4 0, 0.0 3,-0.1 0.190 58.4 -39.3 -78.1-159.2 -4.8 -24.7 -7.0 28 28 A N S S- 0 0 140 1,-0.2 0, 0.0 2,-0.0 0, 0.0 -0.525 126.1 -5.0 -70.2 124.6 -2.8 -25.3 -10.2 29 29 A R S S- 0 0 219 -2,-0.4 2,-0.4 1,-0.1 -1,-0.2 0.897 81.1-168.3 57.0 99.7 0.1 -22.9 -10.2 30 30 A N - 0 0 91 -3,-0.1 2,-0.4 -4,-0.1 -1,-0.1 -0.965 7.5-159.0-123.1 135.6 -0.2 -20.6 -7.2 31 31 A K - 0 0 182 -2,-0.4 0, 0.0 1,-0.0 0, 0.0 -0.903 19.9-121.4-114.1 140.9 1.8 -17.4 -6.5 32 32 A V - 0 0 111 -2,-0.4 2,-1.7 1,-0.1 40,-0.0 -0.253 38.9 -94.1 -71.5 166.0 2.4 -15.8 -3.1 33 33 A A + 0 0 29 38,-0.2 40,-2.1 2,-0.0 2,-0.5 -0.579 62.7 158.7 -83.3 85.3 1.2 -12.2 -2.5 34 34 A T E -a 73 0A 55 -2,-1.7 2,-0.6 38,-0.2 40,-0.2 -0.920 22.9-167.1-112.0 128.1 4.5 -10.4 -3.3 35 35 A I E -a 74 0A 2 38,-1.3 40,-1.5 -2,-0.5 -17,-0.0 -0.890 20.6-133.1-116.0 106.5 4.5 -6.7 -4.2 36 36 A K E > -a 75 0A 116 -2,-0.6 4,-1.9 38,-0.3 5,-0.3 0.050 21.3-118.1 -45.0 167.5 7.8 -5.4 -5.6 37 37 A R H > S+ 0 0 58 38,-1.1 4,-1.8 2,-0.2 5,-0.4 0.832 113.5 60.2 -83.0 -31.2 8.9 -2.1 -4.1 38 38 A D H 4 S+ 0 0 114 37,-0.2 -1,-0.2 3,-0.2 4,-0.2 0.761 114.8 37.7 -67.1 -20.2 8.7 -0.2 -7.4 39 39 A K H > S+ 0 0 115 2,-0.2 4,-1.9 3,-0.1 5,-0.2 0.897 117.0 44.8 -95.0 -60.1 5.0 -1.2 -7.5 40 40 A V H X S+ 0 0 1 -4,-1.9 4,-1.9 1,-0.3 3,-0.2 0.944 118.9 46.0 -50.2 -48.1 3.9 -0.8 -3.9 41 41 A R H X S+ 0 0 65 -4,-1.8 4,-1.7 -5,-0.3 -1,-0.3 0.874 102.9 66.5 -64.2 -33.1 5.8 2.5 -3.7 42 42 A E H > S+ 0 0 101 -5,-0.4 4,-1.7 1,-0.2 3,-0.5 0.955 104.0 43.6 -53.4 -49.8 4.3 3.4 -7.0 43 43 A I H X S+ 0 0 32 -4,-1.9 4,-1.8 1,-0.3 3,-0.3 0.958 109.3 55.8 -62.2 -47.6 0.8 3.6 -5.4 44 44 A A H < S+ 0 0 1 -4,-1.9 -1,-0.3 1,-0.2 -2,-0.2 0.805 105.4 56.7 -55.8 -23.6 2.2 5.4 -2.4 45 45 A E H >< S+ 0 0 82 -4,-1.7 3,-1.7 -3,-0.5 -1,-0.2 0.932 101.6 52.1 -75.0 -44.3 3.4 7.9 -4.9 46 46 A L H 3< S+ 0 0 118 -4,-1.7 -2,-0.2 1,-0.3 -1,-0.2 0.860 118.3 39.9 -60.5 -31.0 -0.0 8.6 -6.4 47 47 A K T 3< S+ 0 0 41 -4,-1.8 3,-0.3 1,-0.1 -1,-0.3 -0.152 83.6 110.9-109.1 39.7 -1.2 9.3 -2.8 48 48 A M S X >S+ 0 0 34 -3,-1.7 5,-1.2 1,-0.2 3,-1.1 0.968 83.9 38.5 -75.8 -52.9 1.9 11.2 -1.7 49 49 A P T 3 5S+ 0 0 106 0, 0.0 -1,-0.2 0, 0.0 -2,-0.1 0.225 108.7 68.6 -80.5 13.8 0.3 14.6 -1.4 50 50 A D T 3 5S+ 0 0 47 -3,-0.3 -2,-0.1 1,-0.1 -43,-0.1 0.288 98.9 45.1-115.2 9.5 -2.9 13.0 -0.0 51 51 A L T < 5S- 0 0 37 -3,-1.1 3,-0.1 2,-0.1 -1,-0.1 0.151 110.9-106.5-135.6 18.3 -1.5 11.8 3.3 52 52 A N T 5 + 0 0 162 1,-0.2 2,-0.4 2,-0.0 -4,-0.1 0.862 63.2 165.9 59.3 31.3 0.4 14.9 4.5 53 53 A A < - 0 0 17 -5,-1.2 -1,-0.2 1,-0.1 -2,-0.1 -0.644 33.8-157.8 -82.2 132.7 3.6 13.0 3.6 54 54 A A S S- 0 0 99 -2,-0.4 2,-0.3 -3,-0.1 -1,-0.1 0.613 75.8 -13.3 -84.4 -10.1 6.8 15.3 3.5 55 55 A S S >> S- 0 0 50 1,-0.1 4,-1.6 -7,-0.1 3,-0.6 -0.973 80.9 -83.6-170.7-179.9 8.5 12.7 1.3 56 56 A I H 3>>S+ 0 0 44 -2,-0.3 4,-1.2 1,-0.2 5,-1.0 0.949 119.4 66.2 -67.5 -46.0 8.3 9.1 0.0 57 57 A E H 345S+ 0 0 143 1,-0.3 -1,-0.2 3,-0.2 4,-0.1 0.820 108.9 43.1 -46.0 -25.6 10.0 7.7 3.2 58 58 A A H <>5S+ 0 0 35 -3,-0.6 4,-1.0 3,-0.1 -1,-0.3 0.843 121.7 37.6 -89.7 -36.7 6.8 8.9 4.8 59 59 A A H >X5S+ 0 0 0 -4,-1.6 4,-1.7 2,-0.2 3,-1.2 0.979 117.8 45.1 -77.9 -67.0 4.4 7.6 2.1 60 60 A M H 3X5S+ 0 0 38 -4,-1.2 4,-1.4 1,-0.3 -3,-0.2 0.835 106.3 68.2 -46.7 -28.7 6.0 4.3 1.1 61 61 A R H >>X S+ 0 0 44 -4,-1.6 4,-2.0 1,-0.2 3,-0.8 0.889 126.6 44.6 -48.5 -38.3 3.6 -1.5 7.5 66 66 A T H 3X S+ 0 0 38 -4,-1.5 4,-0.5 -5,-0.4 6,-0.3 0.927 116.8 43.4 -74.3 -43.5 0.2 -1.6 5.8 67 67 A A H 3< S+ 0 0 0 -4,-1.1 -1,-0.2 -5,-0.3 -2,-0.2 0.031 122.3 42.3 -89.8 31.0 1.3 -3.9 2.9 68 68 A R H X4 S+ 0 0 116 -3,-0.8 3,-1.1 5,-0.0 -3,-0.2 0.512 111.9 42.3-138.0 -53.6 3.3 -6.1 5.4 69 69 A S H 3< S+ 0 0 115 -4,-2.0 -3,-0.1 -5,-0.3 -2,-0.1 0.588 107.7 66.2 -77.8 -6.3 1.3 -6.8 8.6 70 70 A M T 3< S- 0 0 74 -4,-0.5 -1,-0.2 2,-0.3 3,-0.1 0.528 125.5 -96.4 -90.9 -4.3 -1.8 -7.3 6.4 71 71 A G S < S+ 0 0 58 -3,-1.1 -38,-0.2 1,-0.5 2,-0.1 -0.068 93.1 112.1 116.0 -34.0 -0.3 -10.4 4.8 72 72 A I - 0 0 1 -6,-0.3 -1,-0.5 -38,-0.1 -2,-0.3 -0.472 52.4-156.2 -72.4 142.6 1.1 -8.8 1.7 73 73 A V E -a 34 0A 42 -40,-2.1 -38,-1.3 -2,-0.1 2,-0.3 -0.494 4.3-134.5-109.0-177.0 4.9 -8.7 1.4 74 74 A V E -a 35 0A 24 -40,-0.2 2,-0.3 -2,-0.2 -38,-0.3 -0.998 8.8-152.3-141.7 144.7 7.2 -6.4 -0.5 75 75 A E E a 36 0A 100 -40,-1.5 -38,-1.1 -2,-0.3 -37,-0.2 -0.826 360.0 360.0-115.4 156.5 10.3 -7.1 -2.7 76 76 A D 0 0 167 -2,-0.3 -2,-0.0 -40,-0.2 -40,-0.0 -0.777 360.0 360.0-165.6 360.0 13.3 -4.9 -3.4