==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RIBOSOME 26-MAY-97 1FOY . COMPND 2 MOLECULE: RIBOSOMAL PROTEIN L11; . SOURCE 2 ORGANISM_SCIENTIFIC: GEOBACILLUS STEAROTHERMOPHILUS; . AUTHOR A.P.HINCK,M.A.MARKUS,S.HUANG,S.GRZESIEK,I.KUSTANOVICH, . 76 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5839.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 47 61.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 6.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 5.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 9.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 25 32.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 5 6.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 134 0, 0.0 6,-0.2 0, 0.0 4,-0.1 0.000 360.0 360.0 360.0 39.4 16.1 4.5 -5.5 2 2 A T + 0 0 119 2,-0.1 2,-0.7 1,-0.1 4,-0.1 0.242 360.0 90.6-114.2 12.3 18.1 5.5 -2.4 3 3 A F S S- 0 0 143 1,-0.1 -1,-0.1 2,-0.1 0, 0.0 -0.842 121.9 -48.9-111.9 99.6 18.9 9.0 -3.5 4 4 A I S S+ 0 0 169 -2,-0.7 -1,-0.1 1,-0.2 -2,-0.1 0.829 117.6 107.2 46.6 28.7 16.2 11.5 -2.4 5 5 A T + 0 0 43 -4,-0.1 -1,-0.2 2,-0.0 -2,-0.1 0.035 41.2 159.6-122.9 26.7 13.8 8.9 -3.9 6 6 A K - 0 0 166 -4,-0.1 -4,-0.1 1,-0.1 41,-0.1 -0.218 39.6-124.2 -50.5 134.0 12.4 7.5 -0.6 7 7 A T - 0 0 39 -6,-0.2 3,-0.1 39,-0.2 -1,-0.1 -0.271 27.0 -97.7 -76.9 171.1 9.0 5.8 -1.5 8 8 A P - 0 0 43 0, 0.0 -1,-0.1 0, 0.0 2,-0.1 -0.205 49.0 -78.0 -80.6 175.5 5.8 6.7 0.2 9 9 A P >> - 0 0 65 0, 0.0 4,-3.3 0, 0.0 5,-0.5 -0.382 46.3-104.5 -74.7 151.8 4.1 4.9 3.1 10 10 A A H >5S+ 0 0 11 2,-0.2 4,-4.2 3,-0.2 5,-0.3 0.935 119.8 43.7 -41.0 -69.2 2.2 1.6 2.5 11 11 A A H >>S+ 0 0 17 2,-0.2 4,-3.8 1,-0.2 5,-0.7 0.946 118.4 43.1 -43.2 -70.5 -1.2 3.2 2.8 12 12 A V H >5S+ 0 0 61 1,-0.3 4,-3.7 2,-0.2 5,-0.3 0.940 118.5 44.7 -42.6 -61.6 -0.4 6.3 0.8 13 13 A L H X>S+ 0 0 13 -4,-3.3 4,-2.3 2,-0.2 5,-0.8 0.914 120.3 43.7 -52.1 -41.0 1.5 4.3 -1.9 14 14 A L H XXS+ 0 0 0 -4,-4.2 5,-3.8 -5,-0.5 4,-0.9 0.995 118.2 40.1 -69.2 -62.9 -1.4 1.8 -1.7 15 15 A K H <5S+ 0 0 60 -4,-3.8 -2,-0.2 3,-0.3 -3,-0.2 0.855 122.7 48.3 -55.8 -29.9 -4.3 4.3 -1.7 16 16 A K H <<5S+ 0 0 51 -4,-2.3 3,-0.8 -5,-0.3 -3,-0.2 0.987 145.5 25.7 -63.1 -59.3 -1.2 3.6 -6.8 18 18 A A T 3<> -a 75 0A 130 -2,-0.3 3,-2.2 38,-0.2 4,-0.9 -0.244 44.7 -84.4 -83.8-179.9 -5.1 -8.5 -6.4 37 37 A R H 3> S+ 0 0 115 38,-0.8 4,-1.8 1,-0.3 5,-0.2 0.746 122.0 80.9 -58.8 -16.8 -1.8 -9.4 -4.7 38 38 A D H 3> S+ 0 0 123 2,-0.2 4,-1.7 3,-0.2 -1,-0.3 0.844 95.6 42.8 -59.2 -31.0 -0.3 -8.2 -8.0 39 39 A K H <> S+ 0 0 91 -3,-2.2 4,-2.6 2,-0.2 5,-0.3 0.963 118.9 38.9 -81.2 -57.3 -0.7 -4.6 -6.7 40 40 A V H X S+ 0 0 1 -4,-0.9 4,-1.5 1,-0.2 -2,-0.2 0.733 114.5 62.7 -65.8 -14.3 0.5 -5.0 -3.1 41 41 A R H X S+ 0 0 147 -4,-1.8 4,-1.9 -5,-0.3 -2,-0.2 0.987 112.6 29.5 -72.9 -59.9 3.1 -7.3 -4.7 42 42 A E H X S+ 0 0 93 -4,-1.7 4,-2.7 2,-0.2 3,-0.3 0.983 119.3 56.5 -63.1 -54.5 4.8 -4.7 -6.8 43 43 A I H X S+ 0 0 9 -4,-2.6 4,-2.7 1,-0.3 5,-0.3 0.921 109.5 46.2 -42.7 -52.3 4.0 -1.9 -4.3 44 44 A A H < S+ 0 0 8 -4,-1.5 4,-0.5 -5,-0.3 -1,-0.3 0.902 109.5 56.3 -61.3 -36.6 5.8 -3.9 -1.6 45 45 A E H < S+ 0 0 107 -4,-1.9 3,-0.3 -3,-0.3 -2,-0.2 0.946 111.4 42.3 -61.0 -45.7 8.6 -4.5 -4.0 46 46 A L H < S+ 0 0 86 -4,-2.7 -2,-0.2 1,-0.2 -1,-0.2 0.986 124.3 34.8 -65.6 -57.1 9.1 -0.8 -4.6 47 47 A K S X S+ 0 0 30 -4,-2.7 4,-1.1 -5,-0.2 3,-0.3 0.417 103.0 84.9 -77.8 5.7 8.8 0.2 -0.9 48 48 A M T >4 S+ 0 0 55 -4,-0.5 2,-2.8 -3,-0.3 3,-0.8 0.988 80.3 56.8 -70.7 -57.3 10.5 -3.1 0.0 49 49 A P T 34 S+ 0 0 87 0, 0.0 -1,-0.2 0, 0.0 3,-0.1 -0.382 124.0 22.6 -73.0 66.8 14.1 -1.9 -0.3 50 50 A D T 34 S+ 0 0 88 -2,-2.8 -2,-0.2 1,-0.5 2,-0.1 0.113 102.0 95.6 160.9 -24.4 13.6 0.9 2.2 51 51 A L S << S- 0 0 48 -4,-1.1 -1,-0.5 -3,-0.8 8,-0.0 -0.429 80.1-118.4 -85.3 164.9 10.6 -0.2 4.3 52 52 A N + 0 0 148 -2,-0.1 -1,-0.1 -3,-0.1 -4,-0.1 0.290 63.4 146.0 -86.2 14.2 10.9 -2.0 7.7 53 53 A A - 0 0 20 -6,-0.3 3,-0.1 -5,-0.2 6,-0.1 0.031 46.6-145.3 -43.9 161.5 9.1 -5.0 6.2 54 54 A A - 0 0 84 1,-0.4 2,-0.2 2,-0.1 -1,-0.1 0.444 68.5 -31.1-112.8 -3.6 10.3 -8.4 7.5 55 55 A S S > S- 0 0 78 1,-0.2 4,-3.9 2,-0.0 -1,-0.4 -0.871 75.4 -74.7 163.8 163.7 9.8 -10.4 4.3 56 56 A I H >> S+ 0 0 112 1,-0.3 4,-2.0 -2,-0.2 3,-0.6 0.948 134.2 35.2 -43.7 -73.8 7.7 -10.6 1.1 57 57 A E H 3> S+ 0 0 165 1,-0.3 4,-1.6 2,-0.2 -1,-0.3 0.846 117.2 58.9 -52.5 -29.9 4.6 -12.1 2.9 58 58 A A H 3> S+ 0 0 25 2,-0.2 4,-1.9 1,-0.2 5,-0.4 0.936 102.8 50.3 -67.2 -43.6 5.6 -9.9 5.8 59 59 A A H X S+ 0 0 79 -4,-3.7 4,-1.7 -5,-0.3 3,-0.8 0.997 113.1 49.0 -62.4 -63.2 -2.5 -5.1 3.6 65 65 A G H 3< S+ 0 0 41 -4,-1.9 4,-0.3 -5,-0.4 3,-0.3 0.900 111.1 53.4 -43.7 -43.3 -3.7 -4.0 7.1 66 66 A T H >< S+ 0 0 43 -4,-1.8 3,-2.5 -5,-0.3 4,-0.4 0.926 100.9 59.5 -61.0 -41.5 -2.5 -0.5 6.1 67 67 A A H XX>S+ 0 0 1 -4,-2.0 3,-2.3 -3,-0.8 5,-1.5 0.901 94.5 64.1 -54.8 -38.7 -4.6 -0.6 3.0 68 68 A R T 3<5S+ 0 0 196 -4,-1.7 -1,-0.3 -3,-0.3 -2,-0.2 0.684 87.2 73.6 -60.9 -12.1 -7.7 -1.1 5.2 69 69 A S T <45S+ 0 0 99 -3,-2.5 -1,-0.3 -4,-0.3 -2,-0.2 0.771 119.7 7.3 -73.8 -21.6 -6.8 2.4 6.5 70 70 A M T <45S- 0 0 69 -3,-2.3 -39,-1.3 -4,-0.4 -2,-0.1 0.596 116.4 -77.3-120.9 -77.6 -8.1 3.9 3.2 71 71 A G T <5S+ 0 0 1 -4,-0.7 -38,-1.7 -41,-0.3 2,-1.5 0.235 73.1 136.1 176.9 29.9 -9.8 1.4 0.8 72 72 A I E < -a 33 0A 2 -5,-1.5 -38,-0.2 -41,-0.2 -4,-0.1 -0.569 36.0-171.3 -91.6 76.6 -7.1 -0.7 -0.9 73 73 A V E -a 34 0A 39 -2,-1.5 -38,-1.7 -40,-1.3 2,-0.4 -0.171 7.0-153.1 -62.2 162.7 -8.7 -4.1 -0.7 74 74 A V E -a 35 0A 24 -40,-0.2 2,-0.3 -35,-0.1 -38,-0.2 -0.909 11.3-174.9-144.5 114.3 -6.7 -7.1 -1.7 75 75 A E E a 36 0A 128 -40,-1.5 -38,-0.8 -2,-0.4 -2,-0.0 -0.810 360.0 360.0-108.7 150.6 -8.1 -10.4 -3.0 76 76 A D 0 0 166 -2,-0.3 -40,-0.1 -40,-0.2 -2,-0.0 -0.647 360.0 360.0 -75.4 360.0 -6.1 -13.6 -3.8