==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RIBOSOME 26-MAY-97 2FOW . COMPND 2 MOLECULE: RIBOSOMAL PROTEIN L11; . SOURCE 2 ORGANISM_SCIENTIFIC: GEOBACILLUS STEAROTHERMOPHILUS; . AUTHOR A.P.HINCK,M.A.MARKUS,S.HUANG,S.GRZESIEK,I.KUSTANOVICH, . 76 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5484.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 59.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 6.6 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 9.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 27 35.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 244 0, 0.0 2,-0.4 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 116.9 -15.9 8.2 2.0 2 2 A T + 0 0 101 4,-0.1 0, 0.0 3,-0.0 0, 0.0 -0.942 360.0 171.1-145.9 121.9 -14.7 10.1 -1.1 3 3 A F + 0 0 208 -2,-0.4 3,-0.1 1,-0.1 -1,-0.0 -0.331 62.1 80.3-124.6 52.3 -14.9 9.0 -4.8 4 4 A I S S- 0 0 144 1,-0.4 2,-0.2 2,-0.1 -1,-0.1 0.682 99.1 -24.2-121.7 -50.3 -14.0 12.2 -6.7 5 5 A T S S+ 0 0 97 1,-0.1 -1,-0.4 2,-0.1 -3,-0.0 -0.841 87.2 76.6-150.6-171.8 -10.2 12.6 -6.6 6 6 A K S S- 0 0 140 -2,-0.2 -2,-0.1 43,-0.1 44,-0.1 0.694 79.0 -94.5 68.5 121.6 -7.0 11.7 -4.7 7 7 A T - 0 0 47 39,-0.3 -2,-0.1 42,-0.2 40,-0.0 0.020 54.2 -82.2 -55.9 175.8 -5.7 8.1 -5.1 8 8 A P - 0 0 35 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.159 53.6 -84.8 -76.1 174.4 -6.8 5.4 -2.6 9 9 A P > - 0 0 76 0, 0.0 4,-2.4 0, 0.0 5,-0.4 -0.166 43.7 -99.3 -74.9 171.2 -5.2 4.9 0.9 10 10 A A H > S+ 0 0 10 2,-0.2 4,-3.9 3,-0.2 5,-0.3 0.993 119.4 41.4 -57.3 -72.4 -2.1 2.8 1.4 11 11 A A H > S+ 0 0 24 2,-0.2 4,-4.0 3,-0.2 5,-0.3 0.934 120.3 44.3 -41.3 -64.7 -3.7 -0.5 2.6 12 12 A V H > S+ 0 0 68 1,-0.3 4,-2.7 2,-0.2 5,-0.2 0.965 117.9 42.8 -47.1 -66.8 -6.5 -0.3 0.0 13 13 A L H X S+ 0 0 6 -4,-2.4 4,-3.4 1,-0.2 5,-0.3 0.880 115.9 52.9 -49.3 -34.6 -4.2 0.7 -2.8 14 14 A L H X>S+ 0 0 0 -4,-3.9 5,-3.0 -5,-0.4 4,-0.5 0.962 106.6 49.8 -67.3 -48.1 -1.9 -2.0 -1.4 15 15 A K H <5S+ 0 0 40 -4,-4.0 -2,-0.2 -5,-0.3 -1,-0.2 0.902 117.7 42.7 -57.7 -37.7 -4.7 -4.6 -1.4 16 16 A K H <5S+ 0 0 136 -4,-2.7 -2,-0.2 -5,-0.3 -1,-0.2 0.986 126.9 29.0 -72.2 -59.6 -5.3 -3.7 -5.1 17 17 A A H ><5S+ 0 0 36 -4,-3.4 3,-1.0 -5,-0.2 -3,-0.2 0.996 143.6 13.6 -64.7 -77.2 -1.7 -3.4 -6.2 18 18 A A T 3<5S+ 0 0 4 -4,-0.5 -3,-0.2 -5,-0.3 -1,-0.2 0.699 121.5 67.8 -76.2 -16.7 0.2 -5.9 -3.9 19 19 A G T 3>> -a 75 0A 110 -2,-0.3 4,-1.4 38,-0.3 3,-0.9 -0.122 50.4 -83.1 -85.9-168.9 9.9 -5.7 -2.3 37 37 A R H 3> S+ 0 0 101 38,-1.3 4,-1.5 39,-0.4 5,-0.2 0.716 121.0 78.8 -70.6 -15.3 10.2 -1.9 -1.9 38 38 A D H 3> S+ 0 0 82 37,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.899 101.5 35.7 -59.9 -38.6 9.9 -1.8 -5.7 39 39 A K H <> S+ 0 0 103 -3,-0.9 4,-3.3 2,-0.2 5,-0.2 0.946 119.7 45.7 -81.7 -51.0 6.1 -2.3 -5.5 40 40 A V H X S+ 0 0 0 -4,-1.4 4,-1.9 1,-0.2 -2,-0.2 0.758 111.9 60.5 -63.7 -15.8 5.5 -0.3 -2.3 41 41 A R H X S+ 0 0 102 -4,-1.5 4,-1.9 -5,-0.2 -2,-0.2 0.986 111.7 32.5 -73.0 -61.1 7.9 2.2 -4.1 42 42 A E H X S+ 0 0 134 -4,-1.8 4,-2.0 2,-0.2 -2,-0.2 0.922 118.0 58.5 -61.6 -41.5 5.7 2.8 -7.2 43 43 A I H >X S+ 0 0 6 -4,-3.3 4,-1.9 1,-0.2 3,-0.5 0.969 107.6 44.1 -53.9 -55.9 2.6 2.3 -5.0 44 44 A A H 3< S+ 0 0 1 -4,-1.9 4,-0.4 -5,-0.2 -1,-0.2 0.874 107.2 62.8 -59.8 -32.2 3.5 5.2 -2.7 45 45 A E H >< S+ 0 0 109 -4,-1.9 3,-0.6 2,-0.2 -1,-0.2 0.926 103.4 48.2 -59.8 -40.5 4.4 7.2 -5.8 46 46 A L H << S+ 0 0 101 -4,-2.0 -39,-0.3 -3,-0.5 -2,-0.2 0.982 120.2 35.7 -64.1 -54.1 0.8 7.0 -6.9 47 47 A K T 3X S+ 0 0 1 -4,-1.9 4,-1.9 1,-0.2 3,-0.4 0.374 99.7 90.2 -79.6 8.0 -0.5 8.0 -3.4 48 48 A M T <4 S+ 0 0 52 -3,-0.6 2,-3.0 -4,-0.4 3,-0.3 0.986 78.5 55.6 -67.8 -56.1 2.5 10.4 -3.1 49 49 A P T 4 S+ 0 0 100 0, 0.0 -1,-0.3 0, 0.0 -42,-0.2 -0.292 126.8 20.6 -73.3 57.8 0.8 13.4 -4.7 50 50 A D T 4 S+ 0 0 59 -2,-3.0 -2,-0.2 1,-0.5 2,-0.1 0.119 102.6 94.6 168.3 -27.9 -2.0 13.3 -2.1 51 51 A L S < S- 0 0 52 -4,-1.9 -1,-0.5 -3,-0.3 8,-0.1 -0.476 76.4-124.8 -82.9 157.9 -0.7 11.2 0.8 52 52 A N + 0 0 153 -2,-0.1 -1,-0.1 -3,-0.1 -4,-0.1 0.252 63.0 141.1 -86.2 17.0 0.9 13.0 3.8 53 53 A A - 0 0 18 -6,-0.3 3,-0.1 -5,-0.1 6,-0.1 0.073 51.6-140.6 -48.5 172.7 4.1 10.9 3.3 54 54 A A - 0 0 81 1,-0.5 2,-0.3 2,-0.1 -1,-0.1 0.376 69.1 -33.0-120.2 0.3 7.4 12.7 4.0 55 55 A S S > S- 0 0 70 1,-0.2 4,-4.2 2,-0.0 -1,-0.5 -0.918 78.0 -68.8 162.7 173.0 9.4 11.1 1.1 56 56 A I H > S+ 0 0 70 -2,-0.3 4,-2.5 2,-0.2 5,-0.4 0.982 134.4 36.7 -51.8 -69.8 9.8 7.9 -0.9 57 57 A E H > S+ 0 0 140 1,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.865 118.8 55.2 -53.0 -32.3 11.3 5.8 1.9 58 58 A A H > S+ 0 0 24 2,-0.2 4,-2.2 3,-0.2 5,-0.3 0.952 108.0 46.1 -68.1 -46.9 8.9 7.7 4.2 59 59 A A H X S+ 0 0 0 -4,-4.2 4,-4.1 1,-0.2 5,-0.3 0.981 116.1 44.7 -60.1 -53.7 5.8 6.8 2.1 60 60 A M H X S+ 0 0 15 -4,-2.5 4,-3.8 -5,-0.3 5,-0.3 0.870 107.3 63.1 -59.3 -32.3 6.9 3.1 1.9 61 61 A R H X S+ 0 0 192 -4,-1.8 4,-1.6 -5,-0.4 5,-0.3 0.987 116.4 27.4 -56.8 -57.1 7.7 3.3 5.6 62 62 A M H X S+ 0 0 101 -4,-2.2 4,-1.8 1,-0.2 -2,-0.2 0.931 122.1 54.8 -71.1 -43.2 4.0 4.0 6.4 63 63 A I H X S+ 0 0 1 -4,-4.1 4,-2.4 -5,-0.3 -3,-0.2 0.915 109.7 49.8 -57.1 -40.7 2.8 2.1 3.3 64 64 A E H >X S+ 0 0 75 -4,-3.8 4,-1.8 -5,-0.3 3,-1.0 0.995 112.2 41.4 -62.4 -74.3 4.8 -0.9 4.5 65 65 A G H 3X S+ 0 0 41 -4,-1.6 4,-0.7 -5,-0.3 -1,-0.2 0.820 114.5 59.9 -44.1 -26.9 3.6 -1.2 8.1 66 66 A T H >< S+ 0 0 42 -4,-1.8 3,-1.3 -5,-0.3 -1,-0.3 0.955 100.2 50.8 -69.2 -48.3 0.2 -0.4 6.6 67 67 A A H X<>S+ 0 0 0 -4,-2.4 3,-2.5 -3,-1.0 5,-1.2 0.899 101.8 62.7 -57.3 -38.7 0.2 -3.5 4.3 68 68 A R H 3<5S+ 0 0 71 -4,-1.8 -1,-0.3 1,-0.3 -2,-0.2 0.816 93.6 63.5 -58.6 -26.3 1.0 -5.7 7.3 69 69 A S T <<5S+ 0 0 91 -3,-1.3 -1,-0.3 -4,-0.7 -2,-0.2 0.544 118.4 24.3 -76.3 -2.2 -2.3 -4.6 8.7 70 70 A M T < 5S- 0 0 47 -3,-2.5 -42,-0.5 -4,-0.2 -40,-0.4 0.460 121.6 -66.9-122.8 -92.1 -4.0 -6.3 5.8 71 71 A G T 5S+ 0 0 1 -4,-0.5 -39,-1.1 -44,-0.1 -38,-0.8 -0.067 92.9 95.4-165.8 49.1 -2.3 -9.1 3.9 72 72 A I E < -a 33 0A 1 -5,-1.2 -38,-0.3 -40,-0.2 -2,-0.2 -0.903 50.0-158.3-149.7 116.9 0.7 -7.9 2.0 73 73 A V E -a 34 0A 36 -40,-3.3 -38,-1.6 -2,-0.3 2,-0.4 -0.390 7.8-150.1 -88.6 171.1 4.3 -8.0 3.2 74 74 A V E -a 35 0A 20 -40,-0.2 2,-0.5 -2,-0.1 -38,-0.3 -0.991 3.2-149.5-145.2 134.9 7.2 -5.7 2.0 75 75 A E E a 36 0A 114 -40,-2.0 -38,-1.3 -2,-0.4 -37,-0.2 -0.897 360.0 360.0-107.6 124.7 11.0 -6.4 1.8 76 76 A D 0 0 143 -2,-0.5 -39,-0.4 -40,-0.2 -38,-0.1 0.377 360.0 360.0 -75.5 360.0 13.3 -3.4 2.1