==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN FIBRIL 29-DEC-08 3FOD . COMPND 2 MOLECULE: AILSST HEXAPEPTIDE SEGMENT FROM ISLET AMYLOID . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.J.W.WILTZIUS,M.R.SAWAYA,K.RAJASHANKAR,D.EISENBERG . 48 8 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4090.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 43.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 20 41.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 4 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 95 0, 0.0 12,-2.9 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 144.3 2.8 7.1 -13.3 2 2 A I E -A 12 0A 59 10,-0.2 2,-0.4 2,-0.0 10,-0.2 -0.985 360.0-175.0-124.8 133.7 3.2 3.7 -11.7 3 3 A L E -A 11 0A 98 8,-2.4 8,-2.9 -2,-0.4 2,-0.4 -0.993 5.8-178.7-127.8 122.6 2.9 0.3 -13.5 4 4 A S E -A 10 0A 47 -2,-0.4 2,-0.4 6,-0.2 6,-0.2 -0.988 5.6-179.2-123.1 130.2 3.1 -2.9 -11.5 5 5 A S E A 9 0A 66 4,-2.7 4,-2.8 -2,-0.4 -2,-0.0 -0.994 360.0 360.0-127.9 124.1 2.9 -6.4 -13.0 6 6 A T 0 0 140 -2,-0.4 -2,-0.0 2,-0.2 28,-0.0 -0.938 360.0 360.0-134.2 360.0 3.1 -9.4 -10.6 7 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 8 1 B A 0 0 95 0, 0.0 2,-0.4 0, 0.0 -2,-0.2 0.000 360.0 360.0 360.0 152.4 7.5 -8.9 -11.1 9 2 B I E -A 5 0A 113 -4,-2.8 -4,-2.7 2,-0.0 2,-0.4 -0.992 360.0-178.0-124.5 126.4 7.9 -5.6 -13.0 10 3 B L E -A 4 0A 70 -2,-0.4 2,-0.5 -6,-0.2 -6,-0.2 -0.988 1.1-177.5-125.1 121.4 7.6 -2.2 -11.4 11 4 B S E -A 3 0A 51 -8,-2.9 -8,-2.4 -2,-0.4 2,-0.5 -0.972 2.7-177.5-121.8 115.9 7.9 1.0 -13.5 12 5 B S E A 2 0A 72 -2,-0.5 -10,-0.2 -10,-0.2 -2,-0.0 -0.967 360.0 360.0-112.0 118.3 7.7 4.4 -11.8 13 6 B T 0 0 151 -12,-2.9 -2,-0.0 -2,-0.5 0, 0.0 -0.812 360.0 360.0-131.0 360.0 7.9 7.4 -14.2 14 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 15 1 C A 0 0 94 0, 0.0 12,-2.9 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 144.5 2.4 29.2 4.4 16 2 C I E -B 26 0B 54 10,-0.2 2,-0.5 2,-0.0 10,-0.2 -0.995 360.0-172.8-132.2 130.2 1.9 25.6 3.5 17 3 C L E -B 25 0B 104 8,-2.5 8,-2.8 -2,-0.4 2,-0.5 -0.991 8.1-178.3-119.7 120.9 2.2 22.5 5.7 18 4 C S E -B 24 0B 47 -2,-0.5 2,-0.5 6,-0.2 6,-0.2 -0.955 0.9-177.1-124.1 111.4 2.0 19.1 3.9 19 5 C S E B 23 0B 60 4,-3.1 4,-2.1 -2,-0.5 -2,-0.0 -0.928 360.0 360.0-110.6 128.2 2.2 16.0 6.1 20 6 C T 0 0 108 -2,-0.5 21,-0.0 2,-0.2 -2,-0.0 -0.802 360.0 360.0-138.9 360.0 2.1 12.5 4.4 21 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 22 1 D A 0 0 105 0, 0.0 2,-0.4 0, 0.0 -2,-0.2 0.000 360.0 360.0 360.0 145.2 -2.4 13.0 5.4 23 2 D I E -B 19 0B 114 -4,-2.1 -4,-3.1 2,-0.0 2,-0.5 -0.996 360.0-174.0-132.8 129.8 -2.9 16.7 6.2 24 3 D L E -B 18 0B 68 -2,-0.4 2,-0.5 -6,-0.2 -6,-0.2 -0.989 8.5-178.3-120.8 118.7 -2.5 19.8 4.0 25 4 D S E -B 17 0B 60 -8,-2.8 -8,-2.5 -2,-0.5 2,-0.5 -0.969 1.3-175.7-121.4 116.1 -2.8 23.1 5.8 26 5 D S E B 16 0B 64 -2,-0.5 -10,-0.2 -10,-0.2 -2,-0.0 -0.950 360.0 360.0-114.2 126.2 -2.6 26.3 3.7 27 6 D T 0 0 150 -12,-2.9 -2,-0.0 -2,-0.5 0, 0.0 -0.789 360.0 360.0-137.6 360.0 -2.6 29.8 5.3 28 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 29 1 E A 0 0 85 0, 0.0 12,-2.8 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 153.6 6.8 7.9 -1.4 30 2 E I E -C 40 0C 75 10,-0.2 2,-0.4 2,-0.0 10,-0.2 -0.984 360.0-176.3-120.9 129.8 6.4 4.6 -3.3 31 3 E L E -C 39 0C 113 8,-2.7 8,-2.9 -2,-0.4 2,-0.5 -0.985 1.8-178.2-126.6 119.0 6.6 1.1 -1.6 32 4 E S E -C 38 0C 47 -2,-0.4 2,-0.5 6,-0.2 6,-0.2 -0.980 3.5-178.6-119.3 122.4 6.4 -2.0 -3.7 33 5 E S E C 37 0C 66 4,-3.1 4,-2.8 -2,-0.5 -2,-0.0 -0.985 360.0 360.0-118.9 117.9 6.6 -5.5 -2.0 34 6 E T 0 0 132 -2,-0.5 -28,-0.0 2,-0.2 -2,-0.0 -0.799 360.0 360.0-132.4 360.0 6.4 -8.4 -4.5 35 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 36 1 F A 0 0 99 0, 0.0 2,-0.4 0, 0.0 -2,-0.2 0.000 360.0 360.0 360.0 150.1 2.0 -8.2 -3.5 37 2 F I E -C 33 0C 109 -4,-2.8 -4,-3.1 2,-0.0 2,-0.5 -0.994 360.0-176.6-128.0 127.2 1.6 -4.7 -1.9 38 3 F L E -C 32 0C 79 -2,-0.4 2,-0.5 -6,-0.2 -6,-0.2 -0.990 5.9-179.8-123.1 121.7 1.9 -1.4 -3.7 39 4 F S E -C 31 0C 50 -8,-2.9 -8,-2.7 -2,-0.5 2,-0.5 -0.983 5.3-178.3-125.0 121.7 1.7 1.8 -1.7 40 5 F S E C 30 0C 75 -2,-0.5 -10,-0.2 -10,-0.2 -2,-0.0 -0.984 360.0 360.0-118.1 125.0 1.9 5.3 -3.2 41 6 F T 0 0 50 -12,-2.8 -21,-0.1 -2,-0.5 -2,-0.0 -0.894 360.0 360.0-131.3 360.0 1.7 8.3 -0.9 42 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 43 1 G A 0 0 93 0, 0.0 12,-2.1 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 104.8 -1.3 28.9 -7.3 44 2 G I E +D 54 0D 83 10,-0.2 2,-0.4 2,-0.0 10,-0.2 -0.906 360.0 179.2-111.9 132.6 -1.2 25.9 -5.0 45 3 G L E -D 53 0D 112 8,-2.6 8,-2.8 -2,-0.4 2,-0.4 -0.980 1.8-177.8-132.6 122.5 -1.4 22.2 -6.1 46 4 G S E +D 52 0D 46 -2,-0.4 2,-0.4 6,-0.2 6,-0.2 -0.978 5.0 172.9-117.7 129.4 -1.3 19.3 -3.7 47 5 G S E D 51 0D 72 4,-2.6 4,-3.2 -2,-0.4 -2,-0.0 -0.924 360.0 360.0-136.7 112.9 -1.4 15.7 -4.8 48 6 G T 0 0 92 -2,-0.4 -7,-0.1 2,-0.2 -8,-0.0 -0.834 360.0 360.0-128.5 360.0 -0.8 12.9 -2.2 49 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 50 1 H A 0 0 66 0, 0.0 2,-0.4 0, 0.0 -2,-0.2 0.000 360.0 360.0 360.0 108.0 3.5 13.4 -2.4 51 2 H I E +D 47 0D 109 -4,-3.2 -4,-2.6 2,-0.0 2,-0.4 -0.924 360.0 178.7-113.4 130.5 3.6 16.4 -4.7 52 3 H L E -D 46 0D 73 -2,-0.4 2,-0.4 -6,-0.2 -6,-0.2 -0.983 2.2-179.3-131.9 121.7 3.4 20.0 -3.6 53 4 H S E +D 45 0D 51 -8,-2.8 -8,-2.6 -2,-0.4 2,-0.4 -0.982 4.6 173.2-120.8 129.7 3.5 23.0 -6.0 54 5 H S E D 44 0D 75 -2,-0.4 -10,-0.2 -10,-0.2 -2,-0.0 -0.920 360.0 360.0-138.1 111.4 3.3 26.6 -5.0 55 6 H T 0 0 153 -12,-2.1 -2,-0.0 -2,-0.4 0, 0.0 -0.885 360.0 360.0-128.5 360.0 4.0 29.4 -7.6