==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER BIOSYNTHETIC PROTEIN 30-JAN-06 2FVE . COMPND 2 MOLECULE: ACYL CARRIER PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: SPINACIA OLERACEA; . AUTHOR G.A.ZORNETZER,B.G.FOX,J.L.MARKLEY . 82 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5517.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 57 69.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 13.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 39 47.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 59 0, 0.0 2,-0.2 0, 0.0 71,-0.1 0.000 360.0 360.0 360.0 169.6 -6.8 -4.1 8.2 2 2 A K > - 0 0 112 69,-0.1 4,-1.9 1,-0.1 5,-0.2 -0.717 360.0-112.9-113.5 165.3 -5.9 -7.8 8.3 3 3 A K H > S+ 0 0 170 -2,-0.2 4,-1.2 1,-0.2 -1,-0.1 0.781 117.2 56.8 -65.8 -26.8 -2.5 -9.6 8.1 4 4 A E H > S+ 0 0 125 2,-0.2 4,-1.5 1,-0.2 -1,-0.2 0.911 106.0 47.9 -71.0 -43.8 -3.6 -11.0 4.7 5 5 A T H > S+ 0 0 13 1,-0.2 4,-2.5 2,-0.2 5,-0.2 0.923 106.7 56.6 -63.1 -46.1 -4.2 -7.6 3.2 6 6 A I H X S+ 0 0 28 -4,-1.9 4,-2.7 1,-0.2 -1,-0.2 0.867 105.6 52.7 -53.9 -38.8 -0.9 -6.2 4.4 7 7 A D H X S+ 0 0 89 -4,-1.2 4,-1.9 2,-0.2 -1,-0.2 0.896 108.7 49.7 -65.0 -41.4 0.9 -9.1 2.5 8 8 A K H X S+ 0 0 93 -4,-1.5 4,-1.5 -3,-0.2 -2,-0.2 0.957 115.4 41.6 -62.7 -52.7 -0.9 -8.2 -0.7 9 9 A V H >X S+ 0 0 0 -4,-2.5 4,-3.1 1,-0.2 3,-0.5 0.953 114.1 51.3 -60.1 -52.6 -0.1 -4.5 -0.6 10 10 A S H 3X S+ 0 0 9 -4,-2.7 4,-3.0 1,-0.3 5,-0.4 0.865 105.8 57.8 -53.5 -38.6 3.5 -5.1 0.6 11 11 A D H 3X S+ 0 0 73 -4,-1.9 4,-0.9 -5,-0.2 -1,-0.3 0.903 112.6 39.0 -59.6 -43.0 3.9 -7.5 -2.3 12 12 A I H X S+ 0 0 0 -4,-3.1 4,-1.6 1,-0.2 3,-1.4 0.973 112.5 47.6 -60.7 -57.7 4.9 -2.0 -3.0 14 14 A K H 3X S+ 0 0 46 -4,-3.0 4,-1.3 1,-0.3 6,-0.3 0.818 108.4 58.4 -53.8 -32.0 8.1 -4.0 -2.5 15 15 A E H 3< S+ 0 0 109 -4,-0.9 -1,-0.3 -5,-0.4 -2,-0.2 0.813 106.7 46.7 -68.5 -30.6 7.9 -5.0 -6.1 16 16 A K H << S+ 0 0 58 -3,-1.4 -2,-0.2 -4,-1.2 -1,-0.2 0.740 116.9 43.2 -82.1 -25.0 7.9 -1.4 -7.1 17 17 A L H < S- 0 0 37 -4,-1.6 2,-0.3 1,-0.2 -2,-0.2 0.565 134.3 -26.6 -94.8 -12.1 10.9 -0.6 -4.8 18 18 A A S < S- 0 0 33 -4,-1.3 -1,-0.2 -5,-0.3 5,-0.0 -0.972 77.9 -73.2-178.4-175.9 12.7 -3.8 -5.8 19 19 A L - 0 0 140 -2,-0.3 -4,-0.1 -3,-0.1 -5,-0.1 0.731 66.2-119.1 -71.0 -22.0 12.4 -7.4 -7.1 20 20 A G S S+ 0 0 18 -6,-0.3 5,-0.1 -7,-0.0 -5,-0.1 0.139 102.7 74.4 103.9 -19.1 11.1 -8.4 -3.7 21 21 A A S S+ 0 0 102 1,-0.1 -6,-0.0 -7,-0.1 -7,-0.0 0.701 99.9 40.9 -96.1 -25.3 13.9 -10.9 -3.0 22 22 A D S S+ 0 0 150 2,-0.0 2,-0.3 0, 0.0 -1,-0.1 0.198 110.8 71.2-106.0 13.2 16.5 -8.2 -2.2 23 23 A V - 0 0 27 2,-0.0 2,-0.5 -5,-0.0 -5,-0.1 -0.945 63.4-151.1-131.0 151.8 14.1 -6.0 -0.2 24 24 A V + 0 0 122 -2,-0.3 2,-0.4 10,-0.1 -3,-0.1 -0.931 19.2 175.5-127.6 108.8 12.3 -6.3 3.1 25 25 A V + 0 0 17 -2,-0.5 2,-0.3 -5,-0.1 -15,-0.0 -0.887 5.3 162.8-114.4 143.7 8.9 -4.6 3.6 26 26 A T - 0 0 80 -2,-0.4 41,-0.7 -16,-0.0 3,-0.4 -0.889 53.6 -93.8-147.0 175.9 6.7 -4.8 6.7 27 27 A A S S+ 0 0 35 -2,-0.3 41,-0.7 1,-0.2 42,-0.3 0.765 127.1 48.4 -65.8 -25.3 3.8 -3.1 8.4 28 28 A D S S+ 0 0 145 38,-0.1 -1,-0.2 39,-0.1 2,-0.1 0.677 91.4 100.6 -87.2 -20.1 6.2 -1.1 10.4 29 29 A S - 0 0 16 -3,-0.4 38,-1.2 1,-0.1 2,-0.4 -0.430 69.2-136.5 -69.1 138.3 8.3 -0.1 7.3 30 30 A E B >> -A 66 0A 89 36,-0.2 4,-3.0 -2,-0.1 3,-0.5 -0.809 11.0-132.4-100.4 136.6 7.6 3.4 6.0 31 31 A F H 3>>S+ 0 0 5 34,-3.0 5,-2.8 -2,-0.4 4,-0.6 0.827 112.6 49.9 -52.1 -33.3 7.3 4.0 2.2 32 32 A S H 345S+ 0 0 99 33,-0.5 -1,-0.3 3,-0.2 3,-0.1 0.836 111.9 46.6 -75.4 -34.0 9.7 6.9 2.7 33 33 A K H <45S+ 0 0 172 -3,-0.5 -2,-0.2 1,-0.2 -1,-0.2 0.838 105.9 58.7 -76.3 -34.5 12.2 4.7 4.6 34 34 A L H <5S- 0 0 42 -4,-3.0 -1,-0.2 2,-0.1 -2,-0.2 0.725 127.0 -98.4 -67.0 -21.1 11.9 1.9 2.0 35 35 A G T <5S+ 0 0 44 -4,-0.6 2,-0.8 -5,-0.3 -3,-0.2 0.610 75.3 144.1 110.6 19.8 13.1 4.4 -0.6 36 36 A A < - 0 0 4 -5,-2.8 -1,-0.2 -6,-0.2 -2,-0.1 -0.821 30.3-164.1 -96.2 110.0 9.7 5.3 -2.1 37 37 A D >> - 0 0 102 -2,-0.8 4,-2.9 1,-0.1 3,-1.1 -0.155 43.5 -83.7 -81.5-179.5 9.7 9.0 -3.1 38 38 A S H 3> S+ 0 0 100 1,-0.3 4,-1.4 2,-0.2 5,-0.1 0.817 134.1 52.1 -54.9 -31.6 6.6 11.1 -3.9 39 39 A L H 34 S+ 0 0 138 2,-0.2 4,-0.5 1,-0.1 -1,-0.3 0.760 112.6 45.2 -76.5 -25.9 6.8 9.7 -7.4 40 40 A D H X> S+ 0 0 29 -3,-1.1 4,-1.7 2,-0.2 3,-1.0 0.936 108.3 53.2 -81.6 -52.7 6.9 6.1 -6.1 41 41 A T H >X S+ 0 0 32 -4,-2.9 4,-1.7 1,-0.3 3,-0.7 0.919 105.5 55.2 -48.0 -52.1 4.1 6.4 -3.5 42 42 A V H 3X S+ 0 0 54 -4,-1.4 4,-1.1 1,-0.3 -1,-0.3 0.836 108.5 49.8 -51.7 -35.1 1.7 7.7 -6.1 43 43 A E H <> S+ 0 0 81 -3,-1.0 4,-2.5 -4,-0.5 -1,-0.3 0.811 103.1 61.2 -74.5 -31.0 2.5 4.6 -8.1 44 44 A I H S+ 0 0 39 -4,-2.9 5,-1.1 1,-0.3 -2,-0.2 0.872 111.1 45.8 -55.1 -39.2 -6.3 0.4 -6.9 50 50 A E H <5S+ 0 0 168 -4,-1.6 -1,-0.3 3,-0.2 -2,-0.2 0.783 112.8 51.7 -75.0 -27.9 -6.1 -1.8 -10.0 51 51 A E H <5S+ 0 0 86 -4,-0.9 -2,-0.2 -3,-0.2 -1,-0.2 0.951 121.6 29.0 -73.2 -52.0 -5.4 -4.9 -7.9 52 52 A F T <5S- 0 0 24 -4,-3.0 -1,-0.2 2,-0.1 -2,-0.2 0.261 106.5-123.4 -91.9 11.1 -8.3 -4.5 -5.5 53 53 A G T 5S+ 0 0 61 -5,-0.3 -3,-0.2 1,-0.2 -4,-0.2 0.782 70.4 131.5 51.9 28.1 -10.4 -2.8 -8.2 54 54 A I < - 0 0 15 -5,-1.1 2,-0.3 -6,-0.4 -1,-0.2 -0.430 47.3-143.2-102.3 179.1 -10.7 0.1 -5.8 55 55 A N + 0 0 128 -2,-0.1 2,-0.3 -3,-0.1 -9,-0.1 -0.982 20.0 166.1-149.1 133.5 -10.2 3.9 -6.1 56 56 A V - 0 0 16 -2,-0.3 2,-0.2 -11,-0.1 -7,-0.1 -0.998 32.4-116.3-148.9 144.6 -8.8 6.5 -3.8 57 57 A D > - 0 0 102 -2,-0.3 4,-1.0 1,-0.1 3,-0.4 -0.499 19.7-130.9 -80.2 148.8 -7.6 10.1 -4.1 58 58 A E T >4 S+ 0 0 59 1,-0.2 3,-0.7 2,-0.2 -1,-0.1 0.910 108.3 58.3 -64.0 -43.7 -4.0 11.1 -3.4 59 59 A D G >4 S+ 0 0 131 1,-0.3 3,-0.6 2,-0.2 -1,-0.2 0.780 107.1 50.0 -57.2 -26.7 -5.0 13.9 -1.1 60 60 A K G 34 S+ 0 0 138 -3,-0.4 3,-0.4 1,-0.2 -1,-0.3 0.749 106.5 54.3 -83.2 -26.0 -6.8 11.3 1.0 61 61 A A G << S+ 0 0 12 -4,-1.0 -1,-0.2 -3,-0.7 -2,-0.2 0.033 77.7 106.0 -95.6 25.9 -3.8 9.0 1.1 62 62 A Q S < S+ 0 0 117 -3,-0.6 -1,-0.2 1,-0.2 -2,-0.1 0.946 75.0 52.5 -69.0 -50.4 -1.6 11.8 2.5 63 63 A D S S+ 0 0 142 -3,-0.4 -1,-0.2 -4,-0.2 -2,-0.1 0.773 85.3 113.6 -56.9 -26.2 -1.5 10.4 6.1 64 64 A I + 0 0 25 1,-0.2 3,-0.1 -4,-0.1 -3,-0.0 -0.256 26.0 141.4 -51.7 123.9 -0.4 7.2 4.5 65 65 A S + 0 0 60 1,-0.3 -34,-3.0 -36,-0.1 -33,-0.5 0.559 58.4 37.0-133.1 -43.4 3.2 6.5 5.6 66 66 A T B > S-A 30 0A 23 -36,-0.3 4,-1.7 -35,-0.1 -1,-0.3 -0.615 88.1-100.0-111.5 172.6 3.6 2.8 6.3 67 67 A I H > S+ 0 0 0 -38,-1.2 4,-1.9 -41,-0.7 3,-0.2 0.926 121.8 54.1 -56.4 -48.2 2.2 -0.4 4.6 68 68 A Q H > S+ 0 0 76 -41,-0.7 4,-2.3 1,-0.2 -1,-0.2 0.913 104.2 55.6 -53.1 -47.0 -0.5 -0.7 7.3 69 69 A Q H > S+ 0 0 90 -42,-0.3 4,-1.4 1,-0.3 -1,-0.2 0.912 111.0 43.5 -53.0 -46.9 -1.7 2.8 6.7 70 70 A A H X S+ 0 0 11 -4,-1.7 4,-1.4 1,-0.2 -1,-0.3 0.761 111.0 57.0 -70.9 -25.3 -2.2 2.0 3.0 71 71 A A H X S+ 0 0 0 -4,-1.9 4,-2.9 -3,-0.2 5,-0.3 0.845 102.6 53.8 -74.1 -35.0 -3.8 -1.3 3.9 72 72 A D H X S+ 0 0 88 -4,-2.3 4,-1.7 1,-0.2 -2,-0.2 0.906 108.2 49.1 -65.7 -42.9 -6.5 0.4 6.1 73 73 A V H X S+ 0 0 42 -4,-1.4 4,-0.7 -5,-0.2 -1,-0.2 0.888 117.8 41.0 -64.1 -40.2 -7.6 2.7 3.2 74 74 A I H >X S+ 0 0 6 -4,-1.4 4,-2.0 2,-0.2 3,-1.6 0.978 116.2 45.8 -71.9 -59.0 -7.8 -0.2 0.9 75 75 A E H 3X S+ 0 0 37 -4,-2.9 4,-1.1 1,-0.3 -2,-0.2 0.805 110.7 57.7 -54.7 -30.1 -9.4 -2.8 3.2 76 76 A G H 3X S+ 0 0 31 -4,-1.7 4,-0.6 -5,-0.3 -1,-0.3 0.766 106.4 48.2 -72.7 -25.5 -11.8 -0.0 4.2 77 77 A L H XX S+ 0 0 32 -3,-1.6 3,-1.1 -4,-0.7 4,-0.7 0.917 104.9 55.6 -79.9 -47.3 -13.0 0.5 0.7 78 78 A L H >< S+ 0 0 62 -4,-2.0 3,-0.8 1,-0.3 -2,-0.2 0.820 103.9 58.1 -54.9 -31.8 -13.6 -3.2 -0.1 79 79 A E H 3< S+ 0 0 136 -4,-1.1 -1,-0.3 -5,-0.2 -2,-0.2 0.839 91.3 68.6 -67.9 -33.6 -15.9 -3.3 2.9 80 80 A K H << S+ 0 0 169 -3,-1.1 -1,-0.2 -4,-0.6 -2,-0.2 0.778 86.1 93.0 -56.3 -26.5 -18.0 -0.5 1.4 81 81 A K << 0 0 116 -3,-0.8 -3,-0.0 -4,-0.7 0, 0.0 -0.015 360.0 360.0 -61.0 172.3 -19.1 -3.0 -1.2 82 82 A A 0 0 154 0, 0.0 -1,-0.2 0, 0.0 -4,-0.0 0.940 360.0 360.0 63.6 360.0 -22.2 -5.1 -0.8