==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=28-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 24-SEP-00 1FWO . COMPND 2 MOLECULE: ORYZAIN BETA CHAIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR D.TOLKATCHEV,P.XU,F.NI . 35 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2853.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 9 25.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 8.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 168 0, 0.0 2,-0.1 0, 0.0 8,-0.0 0.000 360.0 360.0 360.0 159.0 -11.3 6.4 0.8 2 2 A H - 0 0 111 8,-0.6 2,-0.1 2,-0.0 6,-0.1 -0.319 360.0-154.8-101.5-171.1 -7.9 5.5 2.4 3 3 A V - 0 0 89 6,-0.2 2,-0.3 -2,-0.1 6,-0.2 -0.521 4.2-166.4-169.5 95.1 -4.4 6.5 1.4 4 4 A a S S- 0 0 29 -2,-0.1 2,-1.2 2,-0.1 14,-0.0 -0.646 71.5 -29.3 -87.2 142.2 -1.2 4.5 2.3 5 5 A D S S- 0 0 83 -2,-0.3 3,-0.1 1,-0.1 22,-0.0 -0.284 111.8 -66.0 54.4 -92.3 2.2 6.2 1.9 6 6 A D S S+ 0 0 114 -2,-1.2 2,-2.8 1,-0.1 -1,-0.1 0.110 121.1 50.8-151.4 -86.1 1.2 8.5 -1.0 7 7 A N S S+ 0 0 133 -4,-0.1 2,-0.3 2,-0.0 -1,-0.1 -0.357 98.1 83.2 -67.2 76.8 0.1 7.2 -4.5 8 8 A F + 0 0 35 -2,-2.8 2,-0.3 -6,-0.1 8,-0.0 -0.971 45.6 169.5-170.7 156.4 -2.4 4.7 -3.1 9 9 A S - 0 0 76 -2,-0.3 -6,-0.2 -6,-0.2 22,-0.1 -0.940 6.8-176.9-172.6 149.4 -6.0 4.5 -1.9 10 10 A b - 0 0 14 -2,-0.3 2,-3.2 4,-0.1 -8,-0.6 -0.901 31.8-129.3-158.8 125.8 -8.7 1.9 -0.9 11 11 A P - 0 0 104 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 -0.275 69.1 -84.1 -71.0 59.0 -12.3 2.3 0.2 12 12 A A S S+ 0 0 95 -2,-3.2 3,-0.0 1,-0.2 22,-0.0 0.787 110.5 113.8 45.5 24.0 -11.8 0.1 3.2 13 13 A G S S+ 0 0 41 20,-0.0 21,-0.4 21,-0.0 22,-0.3 0.251 82.1 2.6-106.1 12.6 -12.4 -2.7 0.8 14 14 A S S S- 0 0 33 19,-0.2 2,-0.3 20,-0.1 -4,-0.1 -0.908 77.1-100.6-168.9-164.4 -8.9 -4.1 1.0 15 15 A T E -A 32 0A 72 17,-1.9 17,-3.4 -2,-0.3 2,-1.1 -0.970 33.1-102.8-138.7 155.1 -5.5 -3.6 2.8 16 16 A a E -A 31 0A 33 -2,-0.3 15,-0.2 15,-0.2 -6,-0.0 -0.623 25.6-159.4 -79.7 101.3 -2.2 -2.0 1.9 17 17 A S - 0 0 65 13,-2.7 -1,-0.2 -2,-1.1 14,-0.1 0.908 25.1-161.4 -46.0 -43.5 0.1 -5.0 1.1 18 18 A S + 0 0 86 12,-0.5 2,-0.2 -3,-0.1 3,-0.1 0.782 14.2 177.7 61.6 115.8 3.1 -2.7 1.8 19 19 A A + 0 0 39 1,-0.2 10,-0.1 2,-0.0 -1,-0.1 -0.764 46.5 57.1-136.8-176.4 6.4 -3.9 0.3 20 20 A F + 0 0 68 -2,-0.2 3,-0.2 7,-0.1 -1,-0.2 0.986 55.9 148.3 54.5 63.4 10.0 -2.7 0.1 21 21 A G + 0 0 69 1,-0.1 -1,-0.1 -3,-0.1 -2,-0.0 0.164 47.5 84.1-113.5 18.5 10.5 -2.3 3.8 22 22 A F S S- 0 0 134 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.323 125.7 -26.7-101.1 8.5 14.3 -3.2 3.9 23 23 A R S S- 0 0 178 -3,-0.2 -2,-0.1 0, 0.0 -3,-0.0 0.180 79.9-123.4 170.2 -25.9 15.4 0.4 3.0 24 24 A N + 0 0 94 1,-0.1 -3,-0.1 -4,-0.0 -4,-0.1 0.986 48.5 154.3 60.6 81.4 12.5 2.1 1.1 25 25 A L S S- 0 0 85 -5,-0.0 -1,-0.1 0, 0.0 -5,-0.1 0.216 84.2 -10.1-121.2 12.6 14.2 3.2 -2.2 26 26 A S S S- 0 0 94 -6,-0.2 -6,-0.0 2,-0.0 -2,-0.0 0.207 82.6-138.6-177.3 -32.2 11.0 3.2 -4.4 27 27 A L - 0 0 45 1,-0.2 2,-0.3 -7,-0.1 -7,-0.1 0.818 24.6-177.7 57.0 111.7 8.2 1.5 -2.4 28 28 A V + 0 0 88 2,-0.0 2,-0.2 -9,-0.0 -1,-0.2 -0.860 24.2 110.6-145.8 109.0 6.1 -0.8 -4.6 29 29 A W - 0 0 54 -2,-0.3 2,-0.3 -10,-0.1 -13,-0.0 -0.773 40.0-139.5-153.8-161.4 3.0 -2.7 -3.4 30 30 A G - 0 0 29 -2,-0.2 -13,-2.7 -15,-0.1 -12,-0.5 -0.882 31.5 -74.9-156.7-171.6 -0.8 -2.8 -3.8 31 31 A b E -A 16 0A 44 -2,-0.3 -15,-0.2 -15,-0.2 -21,-0.0 -0.768 37.8-146.2 -99.1 143.3 -4.1 -3.3 -2.0 32 32 A S E -A 15 0A 51 -17,-3.4 -17,-1.9 -2,-0.3 2,-0.5 -0.897 18.7-118.1-112.0 139.0 -5.3 -6.7 -0.8 33 33 A P - 0 0 86 0, 0.0 -19,-0.2 0, 0.0 -20,-0.0 -0.576 13.7-152.6 -73.7 119.4 -9.0 -7.8 -0.6 34 34 A V 0 0 89 -2,-0.5 -20,-0.1 -21,-0.4 -21,-0.0 0.797 360.0 360.0 -63.9 -24.4 -9.9 -8.6 3.0 35 35 A E 0 0 225 -22,-0.3 -22,-0.0 -3,-0.0 0, 0.0 -0.270 360.0 360.0-156.8 360.0 -12.6 -11.0 1.6